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Abstract

This paper proposes a low-level API for a stackful execution context, suitable to act as building-block for high-
level constructs like stackful coroutines from N39851 (Boost.Coroutine29) as well as to implement effective
cooperative multitasking (Boost.Fiber10).
Based on the proposed low-level API, the follow-up proposal N43985 introduces a unified syntax for stackless
and stackful coroutines.

The most important features are:

• first-class object that can be stored in variables or containers

• introduction of new keyword resumable together with a lambda-like expression

• symmetric transfer of execution control, i.e. suspend-by-call - enables a richer set of control flows than
asymmetric transfer of control (i.e. suspend-by-return as described in N4134)

• benefits of traditional stack management retained

• ordinary function calls and returns not affected

• working implementation in Boost.Context8

Background

At the November 2014 meeting in Urbana the committee discussed proposals for stackless (N41343 and
N42444) and stackful (N39851) coroutines. The members of the committee concluded that stackless and stackful
coroutines are distinct use cases and decided to pursue both kinds of coroutines.
The committee encouraged the community to evaluate the possibility of a unified syntax for coroutines.

Definitions

This section gives an overview about the wording used in this proposal.

Execution context environment in which program logic is evaluated (CPU registers, stack).

Activation record also known as activation frame or stack frame (a special activation record).
An activation record is a data structure containing the state of a particular function call. The following data are
part of an activation record:

• a set of registers (defined by the calling convention of the ABI ∗, e.g. the return address)

• local variables

• parameters to the function

• eventually return value

Stack frame an activation record allocated on the processor stack; stack frames are allocated in strict last-
in-first-out order - placed by incrementing/decrementing the stack pointer register on function call/return.

Heap-allocated activation record an activation record allocated in heap storage; every heap allocated
activation record holds a pointer to its parent activation record (parent pointer tree).

∗Application Binary Interface
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Processor stack is a chunk of memory into which the processor’s stack pointer register is pointing. The
processor stack might belong to:

• an application’s initial (or only) thread

• an explicitly-launched thread

• a sub-thread execution context (e.g. a coroutine or fiber)

Application stack The processor stack assigned to function main() is generally a linear stack. Often, the
memory management system is used to detect stack overflow and to allocate more memory. This stack is
ideally placed well away from any other data in the process’s address space so it can be extended as needed.

Thread stack The processor stack assigned to an explicitly-launched thread is generally a linear stack. In a
32-bit (or smaller) address space, the operating system cannot, in general, guarantee that such a stack can be
arbitrarily extended on overflow: the range of available addresses is constrained by the next adjacent allocated
memory block. Instead, stacks with a fixed size are used - usually 1MB (Windows) up to 2MB (Linux), but
some platforms use smaller stacks (64KB on HP-UX/PA and 256KB on HP-UX/Itanium).

Side stack is a processor stack that is used for stackful context switching. Each execution context gets its
own stack. The stack belonging to an inactive context remains unchanged, while function calls and returns
push and pop stack frames on the currently-active stack.
A side stack is generally allocated by the running process (library code) rather than by the operating system. It
might either be a linear stack or a linked stack.

Linear stack is a contiguous memory area into which the processor’s stack pointer register points. On a
processor with a stack pointer register, this is the traditional stack model for C++. Allocation and deallocation
of activation records (stack frames in this context) is performed by incrementing/decrementing the stack
pointer.

Linked stack also known as split stack6 or segmented stack.7 This is a linked list of contiguous memory
blocks of intermediate size, each of which might hold several function stack frames. The processor’s stack
pointer points into the head block on this list; normally a new stack frame is allocated by adjusting the stack
pointer, as usual. When compiler-generated code detects near overflow, it links on a new head block. Thus, the
effective stack space can grow arbitrarily without requiring a single contiguous address range.
This mechanism has a low performance penalty - typically adding around 5-10% overhead to the instruction
sequence implementing a function call. Only an application consisting solely of empty functions would see
that impact overall. Small functions would see the most overhead – but modern C++ compilers work really
hard to inline small functions, and of course the overhead vanishes entirely for inline functions.
Applications compiled with support for linked stacks can use (link against) libraries not supporting linked
stacks. (See GCC’s documentation,6 chapter ’Backward compatibility’.)

Non-contiguous stack is a parent pointer tree-structure used to store heap-allocated activation records.
It is a stack with branches; an activation record can outlive the context in which it was created. With this
mechanism, the processor’s stack pointer register does not point to (or into) any of these activation records.
Compare to Linked stack.
A heap activation record is allocated on entry to a function and freed on return, as with N4134.3

This structure is also called cactus stack11 or spaghetti stack.

Parent pointer tree data structure in which each node has a pointer to its parent, but no pointer to its
children. Traversal from any node to its ancestors is possible but not to any other node.
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Coroutine function that enables explicit suspend and resume of its progress by preserving execution state
(activation record), thus providing an enhanced control flow. Coroutines have the following characteristics:1

• values of local data persist across context switches

• execution is suspended as control leaves coroutine and resumed at certain time later

• symmetric or asymmetric control-transfer mechanism

• first-class object or compiler-internal structure

• stackless or stackful

Toplevel context function is a function executed as a coroutine (stackless or stackful). This term is
particularly useful when discussing library-supported context switching, as the execution context must be
constructed explicitly and passed a function.

Asymmetric coroutine provides two distinct operations for the context switch - one operation to resume
and one operation to suspend the coroutine.
An asymmetric coroutine is tightly coupled with its caller, i.e. suspending the coroutine transfers execution
control back to the point in the code from which the coroutine was last resumed. The asymmetric control-
transfer mechanism is usually used in the context of generators.

Symmetric coroutine only one operation to resume/suspend the context is needed.
A symmetric coroutine does not know its caller; control can be transferred to any other symmetric coroutine
(which must be explicitly specified). The symmetric control-transfer mechanism is usually used to implement
cooperative multitasking.

Fiber/user-mode thread execute tasks in a cooperative multitasking environment involving a scheduler.
Coroutines and fibers are distinct (N40242).
Code running in a user-mode thread (or “fiber”) suspends by passing control to the scheduler, which selects
the next fiber to resume. Such code is not inherently coupled to the code that launched the fiber (as with an
asymmetric coroutine); nor must it explicitly select the next fiber (as with a symmetric coroutine).

Resumable function N41343 describes resumable functions as an efficient language-supported mech-
anism for stackless context switching introducing two new keywords - await and yield. A resumable
function is a kind of asymmetric coroutine: suspending passes control back to its caller.
Characteristics of resumable functions:

• stackless

• uses heap allocated activation records (referred as activation frames in N4134)

• tight coupling between caller and resumable function (asymmetric control-transfer mechanism)

• implicit return-statement3 (code transformation)

Suspend by return The terms stackless and stackful can become confusing as different implementations
are discussed. An N41343 “stackless” resumable function might consume a bit of the current processor stack
on entry, cleaning it off on suspension. A cactus stack coroutine implementation might provide “stackful”
semantics while completely avoiding the processor stack.
Suspend by return describes a mechanism such as described in N41343 and N4244,4 in which suspending is
implemented by returning from the function body.

Suspend by call describes a mechanism such as described in N3985,1 in which suspending is implemented
by calling some other (library) function.
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Introduction

Traditionally C++ code is run on a linear stack, i.e. the activation records are allocated in strict last-in-first-out
order. This stack model allocates activation records on function call/return by incrementing/decrementing
the stack pointer.
But in the context of coroutines, that is, switching between different execution contexts, a linear stack introduces
problems. Calling a function creates an activation record on the stack which is removed if the function returns.
But for a suspended coroutine the activation record must not be removed!
Consider the following scenario:

• Assume the processor stack is built in descending order: that is, a PUSH instruction decrements the
stack pointer register. Call the stack pointer’s initial value SP0.

• Function main() enters coroutine C().

• C()’s prolog allocates a stack frame of size sizeof(C::frame) by decrementing SP. SP is now at SP1
= (SP0 - sizeof(C::frame)).

• C() suspends, returning control to main(). main() must find its stack frame at SP = SP0.

• main() now calls function F().

• F()’s prolog allocates a stack frame of size sizeof(F::frame) by decrementing SP. SP is now at SP2
= (SP0 - sizeof(F::frame)).

• Unless either (sizeof(C::frame)== 0) or (sizeof(F::frame)== 0), any data written by F()
to its own stack frame will necessarily overwrite any data saved by C() in its stack frame.

• F() returns. SP is back to SP0.

• main() resumes C(). SP is set to SP1.

• C() attempts to access data in its stack frame – which has been overwritten by F(). We are now in the
realm of Undefined Behavior.

In order to prevent stack corruption, a stackless coroutine uses a heap-allocated activation record (N41343),
while stackful coroutines use a side stack (N39851).
Since an N4134 stackless resumable function uses suspend by return, when it suspends, the stack pointer is
restored to its position before the resumable function was called. While executing, a resumable function can
consume additional space in the linear processor stack; it can call traditional functions. But they must all
return before the resumable function suspends. If resumable function A() calls function B(), and B() wishes
to suspend, B() must also be a resumable function. Thus the term stackless: a suspended resumable function
leaves no activation record on the linear processor stack. A single linear stack can be reused by an arbitrary
number of suspended resumable functions.
Using a side stack permits stackful coroutines to use suspend by call. An arbitrary number of ordinary stack
frames can be left on the side stack for a suspended coroutine context; arbitrary stack frames can be pushed or
popped on the currently-active stack, independently of any suspended stack.
This is the fundamental difference between stackless and stackful coroutines.

Traditional stack management – a single linear stack per thread – is inadequate for coroutines because
coroutines must outlive the context in which they were created.
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Discussion

Memory requirements In the case of a simple toplevel context-function, stackless and stackful coroutines
have the same memory requirements for their activation records.

As described in N4134, the compiler analyses the body of the toplevel context function and determines
the required size and allocates the activation record on the heap.

// N4134: stackless resumable function
generator<int> fib(int n){

int a=0,b=1;
while(n-->0){

yield a;
auto next=a+b;
a=b;
b=next;

}
}

int main(){
for(auto v:fib(35)){

std::cout<<v<<std::endl;
if(v>10)break;

}
}

In the example of calculating Fibonacci numbers using a resumable function, the compiler reserves space in
the activation record for local variables n, a, b and next. Those variables are not accessed via the stack pointer.
The processor stack is not used and the stack pointer is not changed∗.

Each stackful coroutine owns a side stack (assigned to the stack pointer). The activation record of the
toplevel context function is stored on the side stack, thus the original stack remains unchanged.

// N4397: stackful execution context
#define yield(x) p=x; mctx();
int main(){

int n=35;
int p=0;
auto mctx(std::execution_context::current());
auto ctx([n,&p,mctx]()mutable resumable(fixedsize(1024)){

int a=0,b=1;
while(n-->0){

yield(a);
auto next=a+b;
a=b;
b=next;

}
});

for(int i=0;i<10;++i){
ctx();
std::cout<<p<<std::endl;

}
}

In the case of calculating Fibonacci numbers using a stackful execution context, the compiler stores the local
variables n, a, b and next on the side stack. The local variables are accessed via the stack pointer.

∗Depending on the calling convention, typical x86 code stores parameters and return address on the stack. This must be
cleaned off by the time control is returned to the caller. Other architectures/ABIs do not have this requirement.
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The memory requirements for both types of coroutines are equal.

Calling subroutines The advantage of stackless coroutines is that they reuse the same linear processor
stack for stack frames for called subroutines. The advantage of stackful context switching is that it permits
suspending from nested calls.

If a traditional function (not another resumable function) is invoked inside the body of a resumable function,
then the activation record belonging to the traditional function is allocated on the processor stack (so it is
called a stack frame). As a consequence, stack frames of called functions must be removed from the processor
stack before the resumable function yields back to its caller.
In other words: the calling convention of the ABI dictates that, after the resumable function returns (suspends),
the stack pointer contains the same address as before the resumable function was entered.
Hence a yield from nested call is not permitted – unless every called function down to the yield point is also a
resumable function.
The benefit of stackless coroutines consists in reusing the processor stack for called subroutines: no separate
stack memory need be allocated.

Of course even a stackless resumable function might fail if its called functions exhaust the available stack.

In stackful context switching, each execution context owns a distinct side stack which is assigned to the
stack pointer (thus the stack pointer must be exchanged during each context switch).
All activation records (stack frames) of subroutines are placed on the side stack. Hence each stackful execution
context requires enough memory to hold the stack frames of the longest call chain of subroutines. Therefore,
to support calling subroutines, stackful context switching has a higher memory footprint than resumable
functions.
On the other hand, it is beneficial to use side stacks because the stack frames of active subroutines remain
intact while the execution context is suspended. This is the reason why stackful context switching permits
yielding from nested calls.

// N4397: stackful execution context
// access current execution context l1
auto l1=std::execution_context::current();
// create stackful execution context l2
auto l2=[&l1]()resumable(segmented()){

std::printf("inside l2\n");
// suspend l2 and resume l1
l1();

}
// resume l2
l2();

Variable l1 is passed to stackful execution context l2 via the capture list of l2. The stack frames of std::printf()
are allocated on the side stack owned by l2.

Asymmetric vs. symmetric As a building block for user-mode threads, symmetric control transfer is
more efficient than the asymmetric mechanism.

Resumable functions (as proposed in N41343) provide two operations for context switching: asymmetric
control transfer. The caller and the resumable function are coupled, that is, a resumable function can only
jump back to the point in the code where it was entered.
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main

f1

f2

f1()

f2()

yield

yield

For N resumable functions 2N context switches are required. This is sufficient in the case of generators, but in
the context of cooperative multitasking it is inefficient.

In contrast to resumable functions, the proposed stackful execution context (std::execution_context)
provides only one operation to resume/suspend the context (operator()()). Control is directly transferred
from one execution context to another (symmetric control transfer) - no jump back to the caller. In addition to
supporting generators, this enables an efficient implementation of cooperative multitasking: no additional
context switch back to caller, direct context switch to next task.
The next execution context must be explicitly specified.

ctxm ctx2 ctx1
ctx2() ctx1()

mctx()

Resuming N instances of std::execution_context takes N+1 context switches.

Passing data Because of the asymmetric resume/suspend operations of N4134, the proposal works well
for generator examples, returning data from the resumable function.

Passing data into the body of resumable functions (N4134) requires helper classes like channel<>.

// N4134: stackless resumable function
goroutine pusher(channel<int>& left, channel<int>& right){

for(;;){
auto val=await left.pull();
await right.push(val+1);

}
}

int main(){
static const int N = 1000*1000;
std::vector<channel<int>> c(N+1);
for(int i=0;i<N;++i){

goroutine::go(pusher(c[i],c[i+1]));
}
c.front().sync_push(0);
std::cout<<c.back().sync_pull()<<std::endl;

}

In this case, the way data are passed into the body is not intuitive and introduces some problems.
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Experience with execution_context from Boost.Context8 turned up a common pattern: to pass a lambda
to the execution_context, using its capture list to transfer data into and to return data from the body.
Parameters (input/output) are accessed via captured references or pointers.

// N4397: stackful execution context
class X{
private:

int* inp_;
std::string outp_;
std::execution_context caller_;
std::execution_context callee_;

public:
X():

inp_(nullptr),outp_(),
caller_(std::execution_context::current()),
callee_([=]()resumable(segmented(1024)){

outp_=lexical_cast<std::string>(*inp_);
caller_(); // context switch to main()

})
{}

std::string operator()(int i){
inp_=&i;
callee_(); // context switch for conversion
return outp_;

}
};

int main(){
X x;
try{

std::cout<<x(7)<<std::endl;
}catch(const std::exception& e){

std::cout<<"exception: "<<e.what()<<std::endl;
}

}

Class X (rudimentary coroutine) demonstrates how input and output parameters are transferred between
contexts. Member variable callee_ represents a new execution context and captures the this-pointer of X. The
body converts a integer variable (input) into a string (output). Any exception thrown by the conversion is
transported and re-thrown in main().

Stack strategies For stackful coroutines two strategies are typical: a contiguous, fixed-size stack (as used
by threads), or a linked stack (grows on demand).
The advantage of a fixed-size stack is the fast allocation/deallocation of activation records. A disadvantage is
that the required stacksize has to be guessed.
The benefit of using a linked stack is that only the initial size of the stack is required. The stack itself grows on
demand, by means of an overflow handler. The performance penalty is low. The disadvantage is that code
executed inside a stackful coroutine must be rebuilt for this purpose. In the case of GCC’s split stacks, special
compiler/linker flags must be specified - no changes to source code are required.
When calling a library function not compiled for linked stacks (expecting a traditional contiguous stack),
GCC’s implementation uses link-time code generation to change the instructions in the caller. The effect is that
a reasonably large contiguous stack chunk is temporarily linked in to handle the deepest expected chain of
traditional function stack frames (see GCC’s documentation6).
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Design

Class std::execution_context is derived from the work on Boost.Context.8 It provides a small, basic
API on which to build higher-level APIs such as stackful coroutines (N3985,1 working implementation
Boost.Coroutine29) and user-mode threads (executing tasks in a cooperative multitasking environment,
working implementation Boost.Fiber10).
In effect, execution_context is a copyable handle to an underlying, noncopyable capture record.
execution_context::operator() preserves the CPU register set ∗ + stack pointer: the content of
those registers is stored in the capture record associated with execution_context::current(). Then
operator() loads the CPU register set and stack pointer from the capture record associated with *this.
Finally, execution_context::operator() stores execution_context::current() in the capture
record associated with *this – to permit backtracking through the history of context switches. It makes
*this become current().

Class std::execution_context Based on implementation experience with execution_context in
Boost.Coroutine29 and Boost.Fiber,10 the author noticed that execution_context is almost always passed
a lambda as its constructor argument. Lambda captures are especially useful for transporting data between
different execution contexts (address of lvalue, residing on stack/heap).
Why not implicitly construct std::execution_context with a ’resumable lambda’-like syntax,4 instead of
explicitly passing a lambda as a constructor argument? Even if std::execution_context is constructed
like a lambda, actually it isn’t a lambda (it is constructible from current() too).
std::execution_context is more like a handle to a capture record of an execution context.

// N4397: stackful execution context
std::execution_context l1=std::execution_context::current();
auto l2=[&l1]()resumable(fixedsize(1024)){

...
};
auto l3=[&l2]()resumable(segmented(1024)){

...
};

The keyword resumable together with a hint (attribute) about the type and size of the side stack tells the
compiler to generate a stackful execution context.
Because of the symmetric context switching (only one operation transfers control), the target execution context
must be explicitly specified.
Exchanging data between different execution contexts requires the use of lambda captures.

First-class object As first-class object the execution context can be stored in a variable or container.

Capture record Each instance of std::execution_context owns a toplevel activation record, the
capture record. The capture record is a special activation record that stores additional data such as stack
pointer, instruction pointer and a link to its parent execution context. That means that during a context switch,
the execution state of the running context is captured and stored in the capture record while the content of the
resumed execution context is loaded (into CPU registers etc.).

Parent context An execution_context’s pointer to its parent execution_context allows one to
traverse the chain of ancestor contexts, that is, to locate the execution_context which resumed (called
operator()() on) the currently active execution_context. Of course the algorithm must prevent a cycle
of parents. The main context (created on entry of main() or thread’s entry-function) will never have a parent
because if the main context terminates the application or the thread terminates.

Active context The static member function current() returns a std::execution_context pointing
to the current capture record. The current active capture record is stored in an internal, thread local pointer.

∗defined by ABI’s calling convention
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Toplevel capture records On entering main() as well as the entry-function of a thread, an execution
context (capture record) is created and stored in the internal pointer underlying current(). (In practice, this
could be lazily instantiated.)

Suspend-on-call std::execution_context is designed to suspend on call of operator()(). The
prologue of operator()() captures (preserves) the active execution context and loads the data from the
capture record of the resumed context (*this) into the CPU.
The previous running context becomes the parent of the resumed context and gets suspended. This forms a
parent-child relationship between the suspended and the resumed context. The parent may vary between
successive calls of operator()().

Termination If the body of the toplevel context function reaches its end, the parent execution context
(pointer in the capture record) is resumed. That means that in the parent context the function operator()()
returns. For this purpose the epilogue of operator()() loads the capture record (instruction pointer, stack
pointer etc.) of the parent context, so that it is resumed.

Exceptions An uncaught exception thrown from the execution context is caught, the parent execution
context is resumed and the exception is re-thrown inside the parent context (that is, the exception is emitted by
operator()()).

11



member functions

(constructor) constructs new execution context

[captures](params) mutable resumable(hint) attrs -> ret {body} (1)

execution_context(const execution_context& other)=default (2)

execution_context(execution_context&& other)=default (3)

1) the constructor does not take a lambda as argument, instead the compiler evaluates the lambda-like syntax
and constructs a std::execution_context directly
captures list of captures
params only empty parameter-list allowed
mutable parameters captured by copy can be modified by body
resumable identify resumable context
hint stack type hint:

• fixedsize(x=default_stacksize): fixed size stack, x determines the stack size
(default_stacksize is platform dependent)

• segmented(x=default_segmented_stacksize): stack grows on demand, x determines
the initial stack size
(default_segmented_stacksize is platform dependent)

attrs attributes for operator()
ret only void allowed (use capture list instead)
body function body

2) copies std::execution_context, e.g. underlying capture record is shared

3) moves underlying capture record to new std::execution_context

Notes
If an instance of std::execution_context is copied, both instances share the same underlying capture
record.

(destructor) destroys an execution context

~execution_context() (1)

1) destroys a std::execution_context. If associated with a context of execution and holds the last
reference to the internal capture record, then the context of execution is destroyed too. Specifically, the
stack is unwound.

operator= copies/moves the coroutine object

execution_context& operator=(execution_context&& other) (1)

execution_context& operator=(const execution_context& other) (2)

1) assigns the state of other to *this using move semantics

2) copies the state of other to *this, state (capture record) is shared

Parameters
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other another execution context to assign to this object

Return value

*this

operator() jump context of execution

execution_context& operator()() (1)

1) suspends the active context, resumes the execution context

Exceptions

1) re-throws the exception of the resumed context in the parent context

Notes
The prologue preserves the execution context of the calling context as well as stack parts like parameter list and
return address ∗. Those data are restored by the epilogue if the calling context is resumed.
An exception thrown inside execution context is caught, the parent execution context is resumed and the
exception is re-thrown in the parent context (out of operator()()).
If the toplevel context function terminates (reaches end), the parent context is resumed (return of
operator()() in the parent execution context).
The behaviour is undefined if operator() is called while current() returns *this (attempting to resume an
already running context).

explicit bool operator test if context has not reached its end

explicit bool operator() noexcept (1)

1) returns true if context is not terminated

Exceptions

1) noexcept specification: noexcept

operator! test if context has reached its end

bool operator!() noexcept (1)

1) returns true if context is terminated

Exceptions

1) noexcept specification: noexcept

∗required only by some x86 ABIs
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current accesses the current active execution context

static execution_context current() (1)

1) construct an instance of std::execution_context pointing to the capture record of the current, active
execution context

Notes
The current active execution context is thread-specific, e.g. for each thread (including main()) an execution
context is created at start-up.

Acknowledgement

I’d like to thank Nat Goodspeed for reviewing earlier drafts of this proposal.

References

[1] N3985: A proposal to add coroutines to the C++ standard library, Revision 1

[2] N4024: Distinguishing coroutines and fibers

[3] N4134: Resumable Functions v.2

[4] N4244: Resumable Lambdas

[5] N4398: A unified syntax for stackless and stackful coroutines

[6] Split Stacks / GCC

[7] Segmented Stacks / LLVM

[8] Library Boost.Context: git repo, documentation

[9] Library Boost.Coroutine2: git repo, documentation

[10] Library Boost.Fiber: git repo, documentation

[11] cactus stack: cactus stack, parent pointer tree

A. recursive descent parser using std::execution_context

This example (taken from Boost.Context8) uses a recursive descent parser for processing a stream of characters.
The parser (a SAX parser or other event-dispatching framework would be equivalent) uses callbacks to push
parsed data to the user code. With std::execution_context the user code inverts the control-flow. In this
case, the user code pulls data from the parser.

// N4397: stackful execution context
// grammar:
// P ---> E ’\0’
// E ---> T {(’+’|’-’) T}
// T ---> S {(’*’|’/’) S}
// S ---> digit | ’(’ E ’)’
class Parser{

int level;
char next;
istream& is;
function<void(char)> cb;

char pull(){
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return char_traits<char>::to_char_type(is.get());
}

void scan(){
do{

next=pull();
}
while(isspace(next));

}

public:
Parser(istream& is_,function<void(char)> cb_) :

level(0),next(),is(is_),cb(cb_)
{}

void run() {
scan();
E();

}

private:
void E(){

T();
while (next==’+’||next==’-’){

cb(next); // callback; signal new symbol
scan();
T();

}
}

void T(){
S();
while (next==’*’||next==’/’){

cb(next); // callback; signal new symbol
scan();
S();

}
}

void S(){
if (isdigit(next)){

cb(next); // callback; signal new symbol
scan();

}
else if(next==’(’){

cb(next); // callback; signal new symbol
scan();
E();
if (next==’)’){

cb(next); // callback; signal new symbol
scan();

}else{
throw std::runtime_error("parsing failed");

}
}
else{
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throw std::runtime_error("parsing failed");
}

}
};

int main(){
std::istringstream is("1+1");
char c;
// access current execution context
auto m=std::execution_context::current();
// use of linked stack (grows on demand) with initial size of 1KB
std::execution_context l(
auto l=[&is,&m,&c]()resumable(segmented(1024)){

Parser p(is,
// callback, used to signal new symbol
[&m,&c](char ch){

c=ch;
m(); // resume main-context

});
p.run(); // start parsing

});
try{

// inversion of control: user-code pulls parsed symbols from parser
while(l()){

std::cout<<"Parsed: "<<c<<std::endl;
}

}catch(const std::exception& e){
std::cerr<<"exception: "<<e.what()<<std::endl;

}
}

You cannot use resumable functions for this example without transforming all functions in the call chain into
resumable functions - which is impossible for closed source code, impractical at best for a large, complex code
base.
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