
	

 Document number:	

 N4166	

	

 Date:	

 2014–10–06	

	

 Reply to:	

 David Krauss	

	

 	

 (david_work at me dot com)	

Movable initializer lists!

1. Abstract!
Often std::initializer_list cannot be used, or it requires a const_cast hack, as it
provides read-only access to its sequence. This is a consequence of the sequence potentially
being shared with other initializer_list objects, although often it is statically known to
be uniquely local. A new initializer list class template is proposed to allow function parameters
which may leverage (by overloading) or require strict ownership. Addition of this class does not
impinge on the cases where the sequence should be shared. No breaking changes are proposed.	

2. Background!
std::initializer_list was designed around 2005 (N1890) to 2007 (N2215), before
move semantics matured, around 2009 . At the time, it was not anticipated that copy semantics 1

would be insufficient or even suboptimal for common value-like classes. There was a 2008
proposal N2801 Initializer lists and move semantics but C++0x was already felt to be slipping at
that time, and by 2011 the case had gone cold. It shares many similarities with this proposal.	

Ownership is very important in modern C++. Users often specify move semantics in the course
of an idiomatic pattern, not for the sake of performance. In particular, std::unique_ptr is
popular in general use for its simplicity and safety. Although std::initializer_list is
often used in constructors to specify the content of a container, it does not own its sequence and
cannot give permission to modify, never mind assume ownership of sequence elements. Instead,
its interface is based on a generalization where the sequence may be initialized at program
startup, and different lists may alias the same immutable sequence. This model is impossible to
realize, however, if any list element depends on the context of initialization. Other aspects of
object initialization require constructors and destructors to be called, further limiting this
optimization. In the majority of uses, ownership exists but it is hidden from the user.	

When every list element depends on a value computed in its scope, or the list is only used once
during the entire program execution and the elements are not of literal type, ownership logically
must exist. In these cases, it is safe to remove the const by a const_cast in order to
complete a move operation. This is hardly an acceptable practice, and few users will extrapolate
the rules correctly. The language needs a facility to safely expose a non-const underlying
sequence.	

���1

 To be fair, move() was first formally presented in 2002 (N1377), and in a mature form, but it remained 1

“in the laboratory” for quite a while. Also, before the appearance of initializer_list, proposals
since 2003 had applied array objects directly to the same initialization problem.

3. Proposal!
A class derived from std::initializer_list<T> is proposed, as ownership is a superset
of observation. Since it implements all the same members, it is provided as a specialization of the
std::initializer_list template. However, it additionally implements an empty moved-
from state, and it assumes ownership in that its destructor destroys the sequence. The iterator
type is a non-const pointer, so that the user may apply std::move to its elements.	

template< typename T >!
struct initializer_list< T && >!
! : initializer_list< T > {!
! typedef T & reference;!
! typedef T * iterator;! !
! using initializer_list< T >::begin;!
! constexpr iterator begin() noexcept;!
! using initializer_list< T >::end;!
! constexpr iterator end() noexcept;! !
! constexpr initializer_list();!
! initializer_list(initializer_list const &) = delete;!
! constexpr initializer_list(initializer_list &&);! !
! ~ initializer_list()!
! ! noexcept(noexcept(begin()->~T()));!
};!

A braced-init-list may be passed to an overloaded function, where the corresponding parameter
types include both initializer_list<T&&> and initializer_list<T>. Rather than
initialize these objects directly by copy-list-initialization ([dcl.init.list] §8.5.4), which would 2

result in overload ambiguity, the list is used to generate a prvalue expression of one of these two
types, and that is used as an argument. An owning list (<T&&>) will initialize an observing list
(<T>), but prefer to confer ownership, by the derived-to-base conversion. An observing list will
only initialize another observing list. The temporary object associated with the prvalue
expression may be elided ([class.copy] §12.8/31). Whichever overload is selected, the behavior
is still the same as copy-list-initialization of the parameter.	

When the implementation generates a temporary initializer list object from a braced-init-list, that
object is a specialization of initializer_list<T&&> if the the underlying array is not
const, and its lifetime coincides with that of the temporary list object. These decisions are at
the implementation’s discretion, for the sake of optimization. However, to prevent arbitrary
overload failure, an owning temporary object must be generated if no corresponding non-owning
parameter is present in the overload set.	

The rvalue reference qualifier && in the template argument has no effect except to select the
specialization. Currently, initializer_list specializations on reference type are ill-formed

���2

 References are to the C++14 FCD, N3936 unless otherwise noted.2

because the iterator member declaration would form a pointer to reference type. When the
initializer list type is deduced per [temp.deduct.call] §14.8.2.1, only the type qualified by an
rvalue reference modifier is deduced. (P’ in the specification is treated as P’ &&opt, and P’ itself
will not be an rvalue reference type. The case of lvalue references does not matter, as that will
produce an ill-formed specialization.) Generically deducing the type and ownership of an
initializer list requires two template overloads. A local variable declared as auto and initialized
with a braced-init-list will never expose a writable sequence.	

Assignability of all initializer_list specializations must be forbidden. C++14 seems to
ambiguously permit assignability, contingent on the implementation using non-const data
members. The semantics are intrinsically broken and easily result in dangling pointers. Changing
the base, observing-only subobject of an owning object would be disastrous, so this is a good
opportunity to completely stamp out initializer_list::operator = . This issue has
also been filed as LWG DR 2432.	

4. Examples!
Ordinary initializer_list<T> continues to work as usual.	

void a(std::initializer_list< int > seq) { // #1!
! for (auto && i : seq) {!
! ! i = 5; // error: i has type int const &.!
! }!
}!!
a({ 1, 2, 3 }); // Sequence probably has static storage.!
a({ errno }); // Sequence probably has automatic storage.!

When an initializer_list<T&&> overload is added to the mix, it handles lists with
exclusive access to the sequence.	

void a(std::initializer_list< int && > seq) { // #2 (overload)!
! for (auto && i : seq) {!
! ! i = 5; // OK. (In practice you would move something.)!
! }!
}!!
a({ 1, 2, 3 }); // Probably calls #1.!
a({ errno }); // Probably calls #2.!

Such a function may usually be implemented generically:	

template< typename t > // t is foo or foo &&.!
void generic(std::initializer_list< t > seq) {!
! for (auto && f : seq) { // f is const or modifiable.!
! ! smth(std::move(f)); // Move is defeated by const. 
! }!
}!

���3

void a(std::initializer_list< foo > seq)  
! { generic(seq); } 
void a(std::initializer_list< foo && > seq)!
! { generic(seq); }! !
If there is only an initializer_list<T&&> overload, the list is required to own the
sequence.	

void b(std::initializer_list< std::unique_ptr<int> && > seq);!!
b({ std::make_unique< int >(1), nullptr }); // OK!

When the template parameter of initializer_list is deduced from the content of the list,
it the ownership status is not deduced but an && modifier does not interfere with deduction.	

template< typename T >!
void c(std::initializer_list< T > seq); // #3!!
c({ 1, 2, 3 }); // T = int, no write access.!
c({ errno }); // Also T = int, no write access.!!
template< typename T >!
void d(std::initializer_list< T && > seq);!!
d({ 1, 2, 3 }); // T = int, write access is guaranteed.!!
template< typename T >!
void c(std::initializer_list< T && > seq); // #4 (overload)!!
c({ errno }); // Probably calls #4.!

The behavior of the auto x = { … } syntax is unchanged; such a variable never exposes
write access.	

auto e = { errno };!
* e.begin() = 5; // Error: begin() has type int const *.!!
for (auto && p : { std::make_unique< int >(5) }) {!
! foo(std::move(p)); // Error: p is constant.!
}!
for (auto && p! // Explicitly specify ownership:!
! ! ! : std::initializer_list< std::unique_ptr< int > && >!
! ! ! ! { std::make_unique< int >(5) }) {!
! foo(std::move(p)); // OK!
}!

When the user knows there is no benefit to sharing, explicitly naming the template with an rvalue
reference type argument guarantees move semantics. This template-id resembles the form of
static_cast< T && > used to accomplish a move.	

���4

std::map< foo, bar > global_table!
! = std::initializer_list< std::pair< foo, bar > && > {!
! { "lala", { 54 } }, { "barf", { 33 } }!
};!

5. Rationale!
A partial specialization is chosen over a new primary template for the sake of familiarity and
simplicity. The && qualifier should be about as easy to remember as adding movable to the
template name, and both have similar connotations. Typical users should not need to be aware of
the subclass relationship in particular, but it should be intuitive in any case that an owner object
may initialize an observer object. This may be more obvious to the user from a similar class
name, even if differently-specialized templates are unrelated types in general. Less importantly,
much of the current specification is hard-coded to the initializer_list<T> name, and
avoiding introduction of movable_initializer_list reduces the required normative
changes. Finally, sharing the primary template enables generic functions which accept owning or
non-owning lists. In the generic context, if iterator is T const *, then move(*iter)
will yield T const &&, which tends to behave just like T const &, i.e. move semantics
applied to a read-only list are converted into pure observation. Function overloads accepting
owning and observing lists can funnel into such a function template, which would not be possible
if the new class were not an initializer_list specialization.	

Partial specialization on a distinct type is chosen over partial specialization with SFINAE
discrimination by a metafunction (such as is_literal) because the behavioral variation of
initializer_list is based not on its type parameter, but on the implementation’s choice of
underlying storage per sequence. Also, in the general case, literal types may have distinct copy
and move semantics, and moving is presumably less costly. There is already an effort to unify
compile-time and runtime string classes, so std::vector<string> could very conceivably
be tasked with accepting either string objects in ROM or temporary strings residing on the stack.
As a matter of evolution, the requirements for literal and ROMable types will tend to relax.
Switching such types to copy-only semantics would produce breakage, and generate resistance to
expanding the scope of these positive qualities in the language.	

Unique ownership and move semantics are chosen over potentially-shared, read-write access to
the sequence for the sake of efficiency and discouraging inappropriate usage. Easily shared write
access would encourage usage as algorithm scratch space, which is against the basic intent of
initializer_list. Ownership allows resources not freed by move-initialization to be freed
as soon as the owning list is destroyed. Moreover, each list object that assumes ownership of the
sequence will be destroyed sooner than the previous owner, following the principle that
destruction occurs in the order opposite from construction. Ownership inclusive of destruction
also eliminates the messy question of the underlying array’s status as an independent object with
its own lifetime. (Does an array bound to a parameter object really need to persist after the
function call until the end of the full-expression, as specified by [dcl.init.list] §8.5.4/9?) The
array is demoted from a pseudo-temporary object to a storage space. Compatibility is unaffected
as the lifetime specified by C++14 still applies unless the user declares a <T&&> specialization.	

���5

Inheritance is chosen over a user-defined conversion or completely distinct classes because it is
the most elegant solution. Inheritance from a specialization of the same template is somewhat
unusual, but not particularly so. The alternatives amount to workarounds with special cases
added to overload resolution, or implicit function calls that need removal by optimization.	

Read-write access requiring an explicit call to move per element is chosen over behavior like
move_iterator for safety and general sensibility. Although initializer_list is not a
container and one pass of iteration should usually suffice, there is no need to impede observation
of an element before deciding where to transfer it.	

Ownership is specified, not deduced, when the list element type is deduced from the items in the
initializer list, to avoid foisting modifiability and deduction of rvalue reference types on generic
functions. This is also the most straightforward way to modify the existing specification, and it
still provides for discriminating ownership in the same way as non-template overloads. The same
applies to auto local variables. If they had deduced ownership, it would lead to surprisingly
implementation-dependent constness, especially in range-for loops as in the final example.	

This proposal makes it easier to observe the implementation-specific behavior of list storage
strategy, but this is acceptable and comparable to another observable optimization, copy elision.
In both cases, the implementation chooses to combine the identity of objects that would
otherwise be distinct. The user must always opt-in to this proposal’s behavioral variance by
supplying multiple overloads. This is a safe solution, and preferable to over-specification which
may forbid optimizations.	

6. Future work!
No prototype yet exists. Practice makes perfect.	

In the standard library, initializer list constructors of class templates supporting element move
semantics will need overloads accepting sequence ownership. This includes the proper containers
but not valarray or string. A cursory search found other uses of initializer_list in
the algorithm and regular expression libraries, but nothing requiring adjustment.	

Some convenient syntax may be invented to request sequence ownership in a range-for loop.	

ROM-friendly, shared-object behavior would be nice to have for all prvalues, not only those used
to initialize initializer_list.	

7. Acknowledgements!
Rodrigo Campos, the author of N2801, provided helpful feedback and kind encouragement.	

Ville Voutilainen provided valuable guidance and review.

���6

