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Summary

We propose the addition of two new kinds of type trait, and four new type traits to the
Metaprogramming and Type Traits Standard Library [meta] for the purposes of low-level
reflection of classes, unions and enumerations. These primitives are thin wrappers for compiler
instrinsics, require zero core language changes, and are designed to be consistent with the
existing [meta] library. Pure library authors can then compose the primitives to provide
higher-level reflection libraries and facilities.

This proposal revises N4027 in accordance with SG7 feedback from Rapperswil (N4027 revises
N3815 with SG7 feedback from Issequah).
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Synoposis

This proposal adds the following entities to <type traits>:
// (I) IntegralTrait, (T) TypeTrait, (S) TextTrait, (L) ListTrait

namespace std
{
enum access_ levels
{ public access, protected access, private access };

namespace enumerator // L
{
template<typename E> struct list size; //
template<typename E, size t I> struct identifier; //
template<typename E, size t I> struct value; // I
}
namespace base class // L
{
template<class C> struct list size; // I
template<class C, size t I> struct type; // T
template<class C, size t I> struct is virtual; // I
template<class C, size t I> struct access level; // I

namespace class member // L
{
template<class C> struct list size; // I
template<class C, size t I> struct name; // S
template<class C, size t I> struct pointer; // I
template<class C, size t I> struct access level; // I

namespace nested type // L
{
template<class C> struct list size; // I
template<class C, size t I> struct identifier; // S
template<class C, size t I> struct type; // T
template<class C, size t I> struct access level; // I



Background

The Metaprogramming and Type Traits Standard Library contains a set of templates, we shall
call Traits, for reflecting types.

Conceptually there are currently two kinds of Traits, we shall call IntegralTrait and TypeTrait.

IntegralTrait

An IntegralTrait is a class template that produces a value of a type suitable for a non-type
template parameter on instantiation (which is formally actually a large superset of integral types).
It is derived from std: :integral constant and (from N3854) has a variable template with
_vappended. For example std: :extent is an IntegralTrait and might be implemented as
follows:

template<typename A, unsigned I = 0> struct extent
integral constant<unsigned,  extent(A,I)> {};

template <typename A, unsigned I = 0>
constexpr size t extent v = extent<T, I>::value;

and so can be used as follows:
static assert(std::extent v<int[42]> == 42); // ok
TypeTrait

A TypeTrait is a class template that produces a type on instantiation. It contains a member
typedef named type. For example std: :remove pointer is a TypeTrait, and might be
implemented as follows:

template<typename T> struct remove pointer { typedef T type; }
template<typename T> struct remove pointer<T*> { typedef T type; }

template<typename T> using remove pointer t
= remove pointer<T>::type;

and so can be used as follows:

static assert(std::is same v<float, std::remove pointer t<float*>>);



New Kinds of Trait

We propose the addition of two new kinds of trait, TextTrait and ListTrait.

TextTrait

A TextTrait is a class template that produces a compile-time string on instantiation. It contains a
static data member named value of a compile-time string type in UTF-8 encoding. There is a
variable template of reference type referring to the value member _v. For example, a theoretical
std: : foo TextTrait might be implemented as follows:

template<typename T> struct foo
{

static constexpr std::string literal<...> value =  foo(T);
ki

template<typename T> constexpr std::string literal<...>& foo v
= foo<T>::value;

And so could be used as follows:

static assert(foo v<C> == “bar”); // ok

ListTrait

A ListTrait is a namespace containing a set of related Traits that produce information about a list
of entities. It contains an IntegralTrait named 1ist size that produces the number of
elements of the list. The remaining Traits are called ListAccessors. Each ListAccessor has the
same template parameters as list_size with an index | of type size_t appended that identifies
which element of the list is being inspected. For example a theoretical std::foo ListTrait with 3
ListAccessors, (1) std: : foo: :bar an IntegralTrait; (2) std: : foo: :baz a TextTrait; and (3)
std::foo: :qux a TypeTrait; might be implemented as follows:

namespace foo // (ListTrait)
{
// list size
template<typename T> struct list size
integral constant<size t,  foo list size(A,I)> {};

template<typename T>
constexpr size t list _size v = list size<T>::value;



// foo::bar (IntegralTrait)
template<typename T, size t I>
struct bar : integral constant<size t,  foo bar(T,I)> {};

template <typename T, size t I>
constexpr size t bar v = bar<T, I>::value;

// foo::baz (TextTrait)
template<typename T, size t I>
struct baz
{
static constexpr std::string literal<...> value
= foo baz(T);
bi

template<typename T, size t I>
constexpr std::string literal<...>& baz_v
= baz<T,I>::value;

// foo::qux (TypeTrait)
template<typename T, size t I>
struct qux

{
using type =  foo qux(T,I);
i

template<typename T, size t I>
using qux_t = qux<T,I>::type;
i
And could be used as follows:
static assert(std::foo::1list size v<C> == 42);
// We then inspect the 14th member...
static assert(std::foo::bar v<C,13> == 109);

static assert (std::foo::baz v<C,13> == “blah”);
static assert(std::is same v<U, std::foo::qux t<C,13>>);

New Traits

We propose the addition of four new ListTraits. They are:



std: :enumerator : The enumerators of an enumeration type.

std: :base class : The base classes of a class type

std::class member : Some members of some class or union types
std::nested type : Some member types of a class type.

We also will mention two other possible future ListTraits:

std: :constructor : The constructors of a class type
std: :member template : The member templates of a class type

Similarly, other ListTraits not mentioned here could be added in the future.

std::enumerator

std::enumerator is a ListTrait which provides information about the enumerators of an
enumeration in declared order. It contains two ListAccessors:

value, an IntegralTrait, the enumerator value
identifier, a TextTrait, the enumerators identifier

So it could be used as follows:

enum foo { bar = 13, baz = 42 };

static assert (std::enumerator::1list size<foo> == 2);

static assert (std::enumerator::value v<foo, 0> == bar);

static assert (std::enumerator::value v<foo,0> == foo(1l3));
static assert (std::enumerator::identifier v<foo,0> == “bar”);
static assert (std::enumerator::value v<foo,1l> == baz);

static assert (std::enumerator::value v<foo,1> == foo(42));
static assert (std::enumerator::identifier v<foo,1l> == “baz”);

This provides complete reflection of an enum-specifier as can be shown from the grammar, so
no further ListAccessors of std::enumerator will be needed.

std::base_class

std: :base class is a ListTrait which provides information about the base classes of a class
type, in the declared order they appear in the base-clause (after pack expansion).



type, a TypeTrait, the type of the base class
is_virtual, an IntegralTrait, true iff the base class is virtual
access_level, an IntegralTrait, the access control level (public, private, protected) of the
base class.
So it could be used as follows:
class A {}; class B {}; class C {};
class D : public A, protected virtual B, private C {};
static assert(std::base class::list size v<D> == 3);
static assert(std::is same v<A, std::base class::type t<D,0>>);

static assert(std::is_same v<B, std::base class::type t<D,1>>);
static assert(std::is same v<C, std::base class::type t<D,2>>);

static assert(std::base class::is virtual v<D,0>> == false);
static assert (std::base class::is virtual v<D,1>> == true);
static assert(std::base class::is virtual v<D,2>> == false);

static assert(std::base class::access level v<D,0>>
== std::public_access));

static assert(std::base class::access level v<D,1>>
== std::protected access));

static assert (std::base class::access level v<D,2>>
== std::private access));

std::class_member

std::class member is a ListTrait which provides information about certain class members of
some class and union types, shown in declared order.

The subject type is required to not contain data members of reference type or bit fields. The
subject type shall not be a lambda type. A violation of either of these requirements is ill-formed,
and should result in a compile-time error.

The reason for this design decision is that we may propose separately later the addition of a
pointer-to-member of reference type and perhaps a pointer-to-member of a bitfield to the core
language. It is not known yet whether such a proposal will be made and accepted. Ifitis not,
then we can create a seperate ListTrait for reference members or bitfields. Until such time as it
is known which of the two directions we will go in, we should leave reflection of such types
ill-formed so as not to break unchanged code that depends on it after a compiler upgrade. That



is, we do not know yet whether members of reference type or bitfields will be included in
std:.class_member.

Likewise for lambda types, they are compiler-generated, so do not have a standardized class
definition on which std::class_member can be easily defined. We make them ill-formed for use
with the first iteration of this proposal, so we keep the option to add them later.

The members of the class/union type shown in std::class_member are functions or objects that
have a direct simple declaration in the definition of the type, and are not member templates or
instantiations thereof. Notably members that are implicitly generated are not shown and
members imported with a using declaration or inherited are not shown. Constructors and
destructors are not shown.

std::class member has 3 ListAccessors, they are:

name, a TextTrait, if the member name is an identifier, the text of that identifier, if the member
name is an operator-function-id, then the text “operator appended with a space character and
then the canonical non-terminal of operator (“operator +”, “operator new[]”, “operator <<=", etc),
if the member is unnamed the empty string, otherwise implemented-defined

pointer, an IntegralTrait, the result of the expression &C::m. That is a pointer-to-member
for a non-static member and a pointer for a static member. Anonymous unions are reflected as
a single sub-object of union type. The sub-objects of the union are not visible in the
std::class_member list of the enclosing class type (they are visible by recursion on the type of
the union sub-object).

access_level, an IntegralTrait, the access level of the member (public, protected or
private)

So it could be used as follows:

class C

{

public: int x;

protected: wvoid f();
private: static char32 t* p;

}i

static _assert(std::class member::list size<C> == 3);
static_assert(std::class member::name<C, 0> == “x");
static assert(std::class member::name<C, 1> == “f”);
static_assert (std::class member::name<C,2> == “p”);

// within a member function of C so that RHS i1s well-formed



static assert (std::class member::pointer<C,0> == &C::x);
static assert(std::class member::pointer<C,1> == &C::f);
static assert (std::class member::pointer<C,2> == &C::p);

static assert(std::class member::access level<C, 0>
== std::public access);

static assert(std::class member::access level<C,1>
== std::protected access);

static assert(std::class member::access level<C, 2>
== std::private access);

std::nested_type

std: :nested type is a ListTrait which provides information about the nested types of a class
type. Each nested type shall be one that is declared with a name in a class definition, and the
list is in declared order. (Unnamed classes and unions can be reached through
std::class_member by deducing the type of the data members of the enclosing class type). The
reflected nested types can be introduced by an alias declaration, a typedef member declaration,
or from a member declaration with a class specifier, enum specifier or an
elaborated-type-specifier. In particular member template classes and member alias
declarations (and instantiations thereof) are not reflected.

So all of T1 through T7 are reflected in std::nested_type of S:

struct S

{
using Tl = int;
typedef int T2;
class T3;
class T4 {};
union T5;
union To {};
enum T7 {};

union { int x; } // not shown in std::nested type,
// shown in std::class member
}s

std::nested type has three ListAccessors, they are:
identifier, a TextTrait, the identifier of the nested type.

type, a TypeTrait, the type of the nested type
access_level, an IntegralTrait, the access level of the nested type (public, private, protected)



So it could be used as follows:

struct foo

{

public: typedef char32 t bar;
protected: using baz = float;
private: struct qux {};

}i

static assert (std::nested type::list size<foo> == 3);

static assert(std::nested type::identifier v<foo, 0> == “bar”);
static assert(std::nested type::identifier v<foo,1> == “baz”);
static assert(std::nested type::identifier v<foo,2> == “qux”);

static assert(std::is_same v<foo::bar,
std::nested type::type t<foo,0>>);

static assert(std::is_same v<foo::baz,
std::nested type::type t<foo,1>>);

static assert(std::is_same v<foo::qux,
std::nested type::type t<foo,2>>);

static assert (std::nested type::access level<foo, 0>
== std::public);

static assert (std::nested type::access level<foo, 1>
== std::protected);

static assert (std::nested type::access level<foo, 2>
== std::private);

Access Control

The most controversial aspect of this proposal has been what to do about access control.

First, we should note that in every other language that has both access control and a reflection
facility (notably Java and C#), it is possible to access and modify private members using
reflection.

Second, you should notice that what we propose are low-level primitives for reflection library
builders. It is extremely difficult to use them directly to access a specific private member by

name of a specific class. It would require quite some determination to do it intentionally, and
would be impossible to happen by accident.



We will now enumerate the options that were considered, and why we have settled on the one
we have.

Option #1: Only reflect public members.
Pros: No risk of breaking encapsulation
Cons: Key reflection use cases become impossible

Option #2: Reflect all members, but make their access level visible.
Pros: Simple. Makes the reflection use cases possible.
Cons: Risk of intentional abuse to access and modify private members

Option #3: Require some opt-in line in a class definition like “friend reflection”

Pros: Requires an opt-in from class designers

Cons: Because class designers can opt-out, if they do not, they become responsible for misuse
of private members through reflection. This is not appropriate, the blame should be on the party
that misused reflection to access private members in non-aggregate fashion.

Option #4: Reflect public members by default, but have an override switch.
Pros: Same as Option #2 with a reduction of the Simple part.
Cons: Increases complexity, risk of abuse still exists.

Option #5: Extend the primitives to give enough information to allow a reflection library to check
friendship within pure library code. Pass in a context class.

Pros: Allows reflection libraries to do fine-grained access check

Cons: Extremely complex. Risk of intentional abuse still exists by using primitives directly.

Option #6: Check access control where primitives are used with core language extension
Pros: Similar to how access control is checked with name lookup

Cons: Crazy complex. Requires core language changes. Not clearly specified / infeasible.
Doesn’t really solve the problem, ends up being equivalent to Option #3.

After extensive discussions we ended up settling on Option #2. Using Option #2 in the low-level
primitives enables reflection library authors to choose between Option #1, #2, #3 and #4 for their
external interface.

To implement Option #2 we introduce an enumeration std::access_levels

enum access levels

{
public access,
protected access,
private access



}i

And then expose a ListAccessor access_level of that type for each ListTrait that is subject to
access control. High-level reflection libraries can then use this information to implement one of
the first four options (or possibly others not considered).

Size / Index Interface

There appears to be clear and strong consensus on the schema, but there has been some
discussion of the interface of ListTrait, and they have undergone a change since last revision to
reduce the number of names introduces into namespace std.

We considered a few different options on the transformation. Our design decisions were as
follows:

We didn’t want to have member templates of templates. There are uncomfortable restrictions
on what can be done with such member templates as opposed to “free” namespace-scope
templates. Also there are usages issues on dependant names. It was also felt that keeping
them as namespace-scope templates was more consistent with the existing traits, so we could
specify a ListTrait as a namespace containing a set of Traits with the “usual” interface.

We also considered having the ListAccessors as data members of a single complete object (per
element of a ListTrait). The concern here was regarding the zero overhead principle. Under
certain usages the enclosing complete object would be odr-used, and so the user would pay for
ListAccessors they did not use. For example using pointer from std::class_member would entail
odr-using name.

With regard to the compiler-side performance of the size-index interface, the implementation of
the instrinsics backing a ListTrait can lazily construct an internal random-access index in
O(list_size) time and space (if the data structure it uses doesn’t already have one). In the typical
case each element will be accessed (in constant time), and so the total time cost per access
remains amortized constant (keep in mind every ListTrait is immutable) which is optimal, and the
O(n) size of the index is the same as the parse tree from the syntax so makes no asymptotic
contribution to size.

There were ideas suggested in Rapperswil SG7 about what we understood to be a possible
compile-time iterator-style interface to ListTrait rather than a size-index interface, that still did not
require core language changes but could use a linked structure without constructing an internal
array index. We don’t have a clear specification of this idea to evaluate the pros/cons, and have
reached out to the commenter for more information, but at time-of-writing have not heard back.



Wording and Reference Implementation

There is a detailed wording of the previous proposal revision N4027, it has not been updated with
the minor changes and additions stated in this proposal.

There is a reference implementation linked from N3815, it contains a set of size-index intrinsics
similar in style to those specified here for accessing class members, base classes,

enumerators and so on, but likewise has not been updated against every minor detail / change /
addition.

There are two sister papers of the previous proposal (N4027) of interest that show how to reflect
the fundamental types and built-in compound types (we already have this in C++), google
“angloname tomazos”. There is also a demo use case for class_member, google
“‘has_member_function tomazos”. These were presented to SG7 at Rapperswil.



