
Doc No: N2666=08-0176
Reply to: Matt Austern <austern@google.com>
Date: 2008-06-11

More STL algorithms (revision 2)

This paper proposes a number of nonstandard STL-style algorithms for inclusion in the
standard. Nothing in this paper is novel or complicated. All of these algorithms have been
around for years, and have been described in books and provided by library vendors as
nonstandard extensions. All of them are easily implementable, and have been implemented.
Most of them are taken from the SGI STL (http://www.sgi.com/tech/stl).

This proposal is a pure extension.

This paper has been updated to reflect Library Working Group comments from the June
2008 Sophia Antipolis standards committee meeting. Some algorithms have been removed,
some have been renamed, and there have been minor changes in wording.

Design Decisions

In most cases there aren't any very important decisions to be made once we've decided to
provide the algorithm in the first place.

Counting versions of copy
The standard copy algorithm takes three arguments: a first/last input iterator pair to
determine the input range, and a single output iterator to determine the start of the output
range. Sometimes, however, it's more convenient to describe the operation as a starting
point and a count than as a starting point and an ending point. This is usually just a matter
of convenience, since we can usually convert between those forms by writing n =
distance(first, last) or last = first, advance(last, n), but it can occasionally be
more important if the iterators are of a type where converting between a range and a count
would be expensive or impractical. (Input iterators that aren't forward iterators, for
example.) The SGI STL provides copy_n and the corresponding version for initializing raw
memory, uninitialized_copy_n.

all_of, any_of, and none_of
These three algorithms provide the ordinary mathematical operations ∀, ∃, and ∄: given a
range and a predicate, determine whether that predicate is true for all elements; whether
there exists an element for which the predicate is true; or whether there exist no elements
for which the predicate is true. Strictly speaking there is no need to provide all three of
these algorithms (!none_of and any_of are equivalent), but all three of these operations
feel equally fundamental.

These three algorithms have accumulated various names over the years. The original
version of this paper chose the names any/none/all (taken from the latest draft of Alex
Stepanov and Paul McJones's Elements of Programming). At the request of the LWG, this
revision uses the names all_of/any_of/none_of.

http://www.sgi.com/tech/stl

copy_if
This is a frequently requested addition, mentioned in (for example) the latest edition of The
C++ Programming Language. It is formally redundant, since it's just the inverse of
remove_copy_if: copying all elements that satisfy a predicate p is just the same as not
copying all elements that satisfy !p. It's worth adding anyway. First, C++ isn't really a
functional language and transforming a predicate into its negation is sometimes awkward.
Second, the workaround of using double negatives is not unconfusing.

find_if_not
Just as copy_if is the inverse of remove_copy_if, find_if_not is the inverse of find_if:
it returns an iterator pointing to the first element that fails to satisfy a predicate p. It's
worth adding for the same reason.

Random sampling
The standard contains random_shuffle, which randomly permutes a range with uniform
distribution. A closely related operation is randomly selecting elements from a range.
(Indeed, Knuth discusses those operations in a single subsection, "Random Sampling and
Shuffling".) There are two important versions of random sampling, one of which randomly
chooses n elements from a range of N elements and the other of which randomly chooses n
elements from an input range whose size is initially unknown except that it is at least n.
These two algorithms are not redundant, even theoretically. Knuth calls them "Algorithm S"
and "Algorithm R". The SGI STL, which has provided them for many years, calls them
random_sample and random_sample_n.

The original version of this paper proposed adding random_sample and random_sample_n.
The LWG was concerned that they might not be well enough understood for standardization,
so they have been removed from this revision. It may be appropriate to propose those
algorithms for TR2.

Three-way lexicographical comparison
The standard lexicographical comparison algorithm throws away information: if we know
that lexicographical_compare(f1, l1, f2, l2) returns false, it could mean either that
the second range is lexicographically less than the other or that the two are
lexicographically equal. Given the existing interface, the only way for the user to get that
extra information is with a second linear-time range traversal. Changing the interface,
however, allows the lexicographical comparison to compute that extra information with just
a single extra comparison.

There are several possible way to of providing the extended version of lexicographical
comparison. The SGI STL provides it as lexicographical_compare_3way, which uses the
ordinary strcmp convention: the return value is negative if the first range is less than the
second, zero if they are equal, positive if the first range is greater.

The original version of this paper proposed lexicographical_compare_3way for
standardization, but, in LWG discussions, there wasn't any consensus that this algorithm
was important enough to standardize at this time. It's not clear how important it is for
strings, and none of the other algorithms that use comparison functions are able to take
advantage of it. It may be appropriate to propose 3-way comparisons for TR2.

Partition algorithms
The original HP STL included partition, but not partition_copy, mainly because it wasn't
clear what the partition_copy interface should be: how can you have a single output

range when you're partitioning elements into two sets? T. K. Lakshman, then at SGI,
pointed out what now seems obvious: partition_copy should copy to two output ranges.

Partitioning a range imposes a structure on it. The standard now provides is_sorted and
is_heap to test whether ranges have specific structures, and is_partitioned is useful for
just the same reasons.

One final partition algorithm is partition_point, which takes a partitioned range as input
and finds the boundary between the elements that do and don't satisfy the partitioning
predicate. This is just a variation of binary search. It generalizes the more common version
of binary search, since searching for a value in a sorted range simply means finding the
partition point between elements greater and less than that value. In fact, as Dave
Abrahams pointed out, this is the most natural way to think about the standard binary
search algorithms in the presence of heterogeneous comparisons. (And the wording in the
C++0x draft already reflects that insight.)

Iota
This algorithm is inspired by the APL ι operator. Like ι, the iota algorithm creates a range of
sequentially increasing values. It's especially useful for testing, since permutations of {1,
2,... N} often make good test input, and it has been in the SGI STL for years.

Exponentiation
The SGI STL provides one more nonstandard algorithm, power. I am not proposing power
for standardization at this time because it is too closely tied into concepts that don't yet
exist in the standard, Monoid and Semigroup. The interface for power would look different
depending on which of those concepts we want it to operate on, and, if we chose Monoid,
we would have to standardize a mechanism for computing a monoid's identity element. The
SGI STL addresses those questions, but not in a completely satisfactory way. More complete
mechanisms are described in the draft of Elements of Programming.

Proposed Wording

Add the following text to an appropriate subsection of 20.6.4
[specialized.algorithms], and add the signatures to the header
<memory> synopsis at the beginning of clause 20.6 [memory].

template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(InputIterator first, Size n,

ForwardIterator result);

Effects:
for (; n > 0; ++result, ++first, --n) {

new (static_cast<void*>(&*result))
typename iterator_traits<ForwardIterator>::value_type(*first);

}
Returns: result

Add the following text to appropriate subsections of 25.1
[alg.nonmodifying], and add the signatures to the header
<algorithm> synopsis at the beginning of clause 25 [algorithms].

template <class InputIterator, class Predicate>
bool all_of(InputIterator first, InputIterator last, Predicate pred);

Returns: true if pred(*i) is true for every iterator in the range [first, last), and
false otherwise.
Complexity: At most last - first applications of the predicate.

template <class InputIterator, class Predicate>
bool any_of(InputIterator first, InputIterator last, Predicate pred);

Returns: true if there exists any iterator in the range [first, last) such that
pred(*i) is true, and false otherwise.
Complexity: At most last - first applications of the predicate.

template <class InputIterator, class Predicate>
bool none_of(InputIterator first, InputIterator last, Predicate pred);

Returns: true if pred(*i) is false for every iterator in the range [first, last),
and false otherwise.
Complexity: At most last - first applications of the predicate.

template <class InputIterator, class Predicate>
bool find_if_not(InputIterator first, InputIterator last, Predicate pred);

Returns: the first iterator i in the range [first, last) such that pred(*i) is false,
or last if there is no such iterator.
Complexity: At most last - first applications of the predicate.

Add the following text to appropriate subsections of 25.2
[alg.modifying.operators], and add the signatures to the header
<algorithm> synopsis at the beginning of clause 25 [algorithms].

template <class InputIterator, class Size, class OutputIterator>
OutputIterator copy_n(InputIterator first, Size n, OutputIterator result);

Effects: For each non-negative integer i<n, performs *(result+i) = *(first+i).
Returns: result+n.
Complexity: Exactly n assignments.

template <class InputIterator, class OutputIterator, class Predicate>
OutputIterator copy_if(InputIterator first, InputIterator last,

OutputIterator result, Predicate pred);

Requires: The ranges [first, last) and [result, result + (last - first)) shall not overlap.
Effects: Copies all of the elements referred to by the iterator i in the range [first, last)
for which pred(*i) is true.
Returns: The end of the resulting range.
Complexity: Exactly last - first applications of the corresponding predicate.
Remarks: Stable.

template <class InputIterator, class OutputIterator1, class OutputIterator2,
class Predicate>

pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,

OutputIterator1 out_true, OutputIterator2 out_false,
Predicate pred);

Requires: InputIterator's value type shall be Assignable, and shall be writable to the
out_true and out_false OutputIterators, and shall be convertible to Predicate's
argument type. The input range shall not overlap with either of the output ranges.
Effects: For each iterator i in [first, last), copies *i to the output range
beginning with out_true if pred(*i) is true, or to the output range beginning with
out_false otherwise.
Returns: A pair p such that p.first is the end of the output range beginning with
out_true and p.second is the end of the output range beginning with out_false.
Complexity: Exactly last-first applications of pred.

template <class InputIterator, class Predicate>
bool is_partitioned(InputIterator first, InputIterator last, Predicate

pred);

Requires: InputIterator's value type shall be convertible to Predicate's argument
type.
Returns: true if [first, last) is partitioned by pred, i.e. if all elements that satisfy
pred appear before those that do not.
Complexity: Linear. At most last-first applications of pred.

template <class ForwardIterator, class Predicate>
ForwardIterator partition_point(ForwardIterator first, ForwardIterator

last, Predicate pred);

Requires: ForwardIterator's value type shall be convertible to Predicate's
argument type. [first, last) shall be partitioned by pred, i.e. all elements that
satisfy pred shall appear before those that do not.
Returns: An iterator mid such that all_of(first, mid, pred) and none_of(mid,
last, pred) are both true.
Complexity: O(log(last-first)) applications of pred.

Add the following text as a new subsection of 26.6 [numeric.ops],
and add the signature to the header <numeric> synopsis at the
beginning of clause 26.6 [numeric.ops].

template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value);

Requires: T shall meet the requirements of CopyConstructible and Assignable types,
and shall be convertible to Forwarditerator's value type. The expression ++val,
where val has type T, shall be well formed.
Effects: For each element referred to by the iterator i in the range [first, last),
assigns *i = value and increments value as if by ++value.
Complexity: Exactly last-first increments and assignments.

References

Donald Knuth, The Art of Computer Programming (Third Edition). Volume 2: Seminumerical
Algorithms.
SGI, Standard Template Library Programmer's Guide, http://www.sgi.com/tech/stl
Alex Stepanov and Paul McJones, Elements of Programming (draft),
http://www.stepanovpapers.com/eop/lecture_all.pdf
Bjarne Stroustrup, The C++ Programming Language (Special Edition).

http://www.sgi.com/tech/stl
http://www.stepanovpapers.com/eop/lecture_all.pdf

	More STL algorithms (revision 2)
	Design Decisions
	Proposed Wording
	References

