N1900=05-0160 Proposal to Add
Date-Time to the C++ Standard Library
0.75

Jeff Garland (jeff-at-crystalclearsoftware.com)
Copyright © 2005 CrystalClear Software, Inc -- Last Modified: Date: 2005-10-02 16:46:22

Table of Contents

LI o LYo O] 1= o £ PP 1
MOLIVALTON BN SCOPE ...ttt ettt ettt et e et e et ettt et e e et et e e et e e et e e ebn e eeaeeennas 4
L0010107= o (S @ 7/= V. = 11
IMPaCt ONthe SEANAAIT ... e e e e e et e e e e e et e e et e e e e e et e e eanaeeanaees 15
Other Standards and REIGEA WOTKcoeuiiiiiii e e a e e e een s 17
(D= o | PSPPSR 23
PrOPOSE TEXE ... eeeiti ettt et et e et b e e et e e et e et et e s 36
1001 0 I 5 T L= T PP TP UPTPPPPPRUPPRPN 50
F o g 011 1= o o 00T 01 PP 50
L (= (=010 TSP 50

Table of Contents

Motivation and Scope
e Target Audience
Applications and General Functionality
e Main Capabilities
Temporal Types
+ Calculation with Dates and Times
Measurement of Times From Clocks
e Input and Output
Local Time Adjustments
« Additional Capabilities
Calendrical Algorithms
e Compatibility with Standard Library
Flexible Time Resolutions

e Specia Vaue Support

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Related Capabilities Not Included
* Recurring Intervals

» Timezone Database

» Loca Time Types

* lteratorsin Time

e Timers

Concepts Overview

Paints, Durations and Periods
Resolution

Calendar and Time Systems

» Epoch Time

» Leap Seconds

Time Zones and Loca Time

* Universa Time- UTC

» Daylight Savings Time - DST
Clocks

Impact on the Standard

Limitations of the Current C++ Standard
Changes to the Current time_get and time_put Facets

Additions to Clock Interfaces

Other Standards and Related Work

Other C++ Libraries

* Rogue Wave

* Recursion Software Time<Toolkit>

* Microsoft Foundation Classes

e ICU Library

Other Language Libraries

+ JAVA Libraries

» Python Libraries

SO 8601 - Representation of Dates and Times

C Standard Library

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

POSIX 1003.1 Timezone Representation

Timezone Database

» Design

Overview of Design
» CoreInterfaces
e YMD Types
* Summary of Temporal Types
< Arithmetic Operations on Tempora Types
e Lack of Communitivity for Some Operations
e Summary of Additiona Types
» Exceptionsfor Errors
» Extensionstotime put and Format Flags
» Differencesfrom Boost Date-Time
Summary of Key Design Decisions
* Advantages of the Design
» Limitations of the Design
General Principles
» Extensive Use of Value Types
» Templates, Interface Separation, and Extensibility
» Using the Gregorian Calendar
» Separation of Date and Time Types
e Separation of Clocks and Temporal Types
Temporal Types - Key Design Decisions
e Assignability, Comparability, and Streamability
e Immutability
* Lack Virtual Functions
* AlwaysValid After Construction
» Underlying representations for dates and times
» Specia Vaues
Input-Output Design Decisions

Local Time Adjustments

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

» Proposed Text
¢ Core Changes
» CoreClasses
* Enumerations
» Basic Duration
» Basic Gregorian Calendar
» BasicDate
» Basic Time Period
» TimeZoneBase
» Concrete Tempora Types
» Date Programming
e Time Programming
e Additional Types
* TimeZone
* Posix Time Zone
» Clock Types
* Input-Output Facets
» Date Output Facet
* Date Input Facet
* Time Output Facet
e Time Input Facet
* Open Issues
» Acknowledgments

* References

Motivation and Scope

The representation of dates and times is arecurring problem for software developers. Almost all non-trivial programs
have the need to represent dates or times for one or more purposes. This proposal describes additions and changes to the
C++ standard library to facilitate programming with dates and times. Most elements of the proposal are currently imple-
mented in the Boost Date-Time Library [http://www.boost.org/libs/date _time/index.html].

Target Audience

The primary audience for this proposal is C++ application and library developers. The proposal provides a foundational
library to simplify application development that needs to manipulate dates and times. In addition, by providing efficient

4

http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

valuetypes, like dat e, thelibrary provides an excellent foundation for building higher level interfaces. For example, a
socket library that provides atimeout value can usethemi | | i seconds typeto provide acleaner interface than is
possible with a primitive type.

Due to the pervasive need for date-time programming, many libraries have been written to support date-time program-
ming. Unfortunately, the date-time domain appears simple and trivial, but is deceptively complex. Thus, many libraries
fail to address a broad range of applications by failing to solve some of the difficult date-time problems, or, providing
inflexible and inefficient implementations. For example, very few libraries support flexible localized input-output cap-
abilities. The lack of more complete standard library support means the re-invention of various date-time capabilities
and alack of portable capahilities to support C++ programmers. The Boost Date-Time Library
[http://Iwww.boost.org/libs/date_time/index.html] and this proposal are both attempts to remedy this condition by build-
ing on other standards (such as 1SO 8601 and Posix 1003.1) and building a best of breed solution to support a broad
range of applications.

Applications and General Functionality

A wide variety of modern software applications need to manipulate dates and times. Like numeric values, the span of
application types that use dates and times include business, scientific, communications, and many others. The following
are some fairly typical uses of dates and timesin applications:

 recording business transaction dates

e presenting calendars and schedules

» calculation of elapsed times

* logging time of an event

» creating a schedule or plan for one or more activities

» calculate timesin multiple time zones

 finding the date of an event (eg: third Thursday in March)

Consider an Estimate class that records an estimate for services rendered. To design this class at |east two temporal val-
ues need to be recorded:

» theday the estimate is made, and

» the number of daysthe estimateisvalid

One core function of the Estimate classisto determineif the estimate is still valid. The following is a sketch of how this
logic might be implemented using the Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html]:

/| Exanmpl e usage of a date tenporal types
class Estimate {

...

bool is_valid() const

date_period valid_period(date_of _estimte, valid_days);
date today = day_cl ock::local _tine(); //read the conputer clock
return valid_period. contai ns(today);

date | ast_valid_day() const

return (date_of _estinmate + valid_days);

http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

private:

std::string estinate_id;

dat e date_of _estimate;

;:i;’:lys val id_days; //number of days estimate is valid
s

In this small example, date, days, and date_period demonstrate the three core temporal types: time points, durations,
and time periods. These are described in more detail in the concepts section.

Main Capabilities

Overal, the main capabilities needed for a standard date-time library include:

» Provide temporal types for representing dates and times
e Support calculation with dates and times

* Measurement of times from clocks

* Input and output of dates and times

* Local time adjustments

Temporal Types

Just as programmers are provided with i nt and doubl e for development of programs involving basic mathematics,
temporal types provide concise representation and cal cul ation with dates and times. Clearly defined temporal types en-
hance coding practice by facilitating the creation of more precise functional interfaces. As with other value types, pro-
grammers expect temporal types to support basic value concepts such as assignability, comparability, and streamability.

The temporal type concepts are described in Points, Durations, and Periods. The list of temporal types provided in the
proposal can be found in Summary of Temporal Types.

Calculation with Dates and Times

Likei nt and doubl e the temporal types provide the framework for time-based arithmetic. The following are some
examples:

date d(2004, Jan, 1);
d += year(1);

d += nont hs(3);

d += days(10);

date_time t(d, hours(5));
t+= mnutes(3) - seconds(2);

mlliseconds nms_count = hours(3) + mlliseconds(100);

The design of these features is described in more detail in Arithmetic Operations on Temporal Types.

Measurement of Times From Clocks

Computer applications frequently need to determine the current time or date. To determine the time, applicationsread a
hardware device that provides a representation of the current time. Usually, this representation is a counter that repres-
ents a duration offset from awell defined epoch time. For example, st d: : gnt i me isaclock interface that retrieves

6

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

the number of secondssince 1970- Jan-1 00: 00: 00 (the epoch) from the local computer clock. Thegnt i ne call
provides the time based on the standard Universal Coordinated Time (UTC). Note that many of the clock APIs also em-
bed the concept of local time adjustment. This typically depends on the time zone settings of the computer.

Reading a clock resultsin the construction of atime point. For example:

/lconstruct UTC tine based
date_time t1 = clock::universal _tine();

/lconstruct localized tine based on tine zone setting of conputer
date d = day_cl ock::local _tinme();

date tinme t2 second_cl ock: :local _tine();

date_ti t3 m crosecond_cl ock: :local _tinme();

//construct |localized tinme based on tine zone specification
posi x_time_zone tz("EST-05EDT, M4. 1. 0, MLO. 5.0");
date_time t4 = second_clock::local _tinme(tz);

Input and Output

People have invented a seemingly infinite set of combinations for representing dates and times, making good input out-
put support quite challenging. The SO 8601 standard

[http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetail ?7CSNUMBER=26780] provides a specification for
formatting of dates and times. However, most applications have requirements that extend beyond 1 SO 8601 including
the need for localized and custom formats. Some of these requirements include the need to support customized strings
for elements of atime representation such as the month name. To support this variety of representations requires arelat-
ively sophisticated input/output capability. The Boost Date-Time Library
[http://www.boost.org/libs/date_time/index.html] provides a set of facets that use format strings and interoperate with
the temporal types. Based on the current C++ formatting facets and integrated with standard streams they provide for
customization of all aspects of input and output. For example:

date d(2005, Jun, 25);

cout << pt << endl; // "2005-Jun-25"

[/ example to custom ze output to be "LongWeekday Longhont hnane day, year"
I "UA Y% 9d, %"

date_facet* facet(new date_facet ("% 9B %, %™"));

cout . i nbue(l ocal e(cout.getloc(), facet));

cout << d << endl;

/1 "Saturday June 25, 2005"

stringstream ss;

ss.str("Saturday June 25, 2005");

date_i nput _facet* input_facet(new date_input_facet ("% 9B %, %");
ss. i mbue(l ocal e(ss.getloc(), input_facet));

date d2; //not_a_date_tine

ss >> d2;

The section Extensions to time_put Format Flags describes the additional formatting flags provided in this proposal.
The new flags support concepts like fractional seconds formatting which are needed to support new concepts provided
by this proposal. The classesdat e_facet ,ti me_facet,date_i nput _facet,andti me_i nput facet
provide support for localization and customization of input/output.

Local Time Adjustments

Local time adjustment is an example of particularly difficult domain logic that is ssmplified by the proposed library.
The rules associated with these adjustments are needed in many applications and overall the library support is quite
poor. Consider, for example, an application that calculates arrival times for an airline. For the end user, it isimportant
to seethe arrival time of the flight in the arriving time zone not the departing time zone. Thus the application needs to

7

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780
http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

manage the logic associated with time zone transitions and daylight savings time transitions. Other than that, the core
application comes down to adding the length of the flight to the starting time of the flight.

One core element of the local time adjustment is the representation of the time zone. A time zone is quite complex to
specify completely since it needs to include everything from output strings to rules that define the start and end of day-
light savings time. The most broadly used solution to representing time zones is provided by the POSIX 1003.1 stand-
ard for representation of timezones. The posi x_t i ne_zone class provides direct support for this standard.

Here's a snippet of the core of this application as written using the proposed library extension including
posi x_time_zone:

// Red-eye flight fromArizona to New York that transits over
/la daylight savings tinme (DST) transition boundary. Az
//doesn't ever shift to DST while New York does. Thus at
/12:00 (in the mddle of the flight the eastern US shifts
/lit's clocks forward an hour. Luckily the application

// devel oper doesn't need to know t hese details.

//setup the tinezones
posi x_ti me_zone nyc_t z("EST-05EDT, V4. 1. 0, MLO. 5. 0");
posi x_time_zone phx_tz("MST-07: 00: 00");

/lconstruct the departure time in phx local tine
date_time departure_tinme_phx(date(2004, Cct, 30), hours(23));

//convert to utc tine
date_time departure_time_utc = departure_time_phx.to_utc(phx_tz);

/lcalculate the arrival tinme in utc
m nutes flight_|length = hours(4) + m nutes(30);
date_time arrival _tine_utc = departure_tine_utc + flight_|ength;

/I now adjust the arrival time which is in the Phoenix timezone to NY
date_time arrival _tine_nyc = arrival _tine.to_l ocal (nyc_tz);

Additional Capabilities

Some other significant capabilities that simplify programming with dates and times include:

» Calendrical algorithms
e Compatibility with standard library
* Flexibletime resolutions

e Specia value support

The following sections describe these capabilities in more detail.

Calendrical Algorithms

Calendrical algorithms, or date generators, are tools for generating other dates or schedules of dates. These generator al-
gorithms allow the representation of concepts such as " The first Sunday in February”. They are useful in performing
tasks such as calculating holidays. In this proposal these algorithms are incorporated into the interface of the date class.
For example, the following constructors incorporate these algorithms:

/1 Construct the date for the Last Sunday in January

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

date d1(2004, Jan, Last_Wek, Sunday);

//Construct a date for the Sunday in the 50th week of the year
date d2(2004, 50, Sunday);

Some additional algorithmsincluded in the date class allow for calendar navigation and calculations. For example:

date d2
date d3

d1l. next _weekday(Tuesday);
d1. previ ous_weekday(Fri day);

days day_countl1l = dl1.days_until _weekday(Thursday);
days day_count2 = dl1.days_before_weekday(Monday) ;

Compatibility with Standard Library

Compatibility with the current standard library is an important requirement for any new addition to the library. In this
proposal there are several aspect of compatibility including:

» compatibility with collections

« compatibility with current input-output library

» compatibility with Ctypesti ne_t andtm

* build on current capabilities where possible

Since the temporal typesin this proposal are value types, they can be used as valuesin standard library collection
classes. In addition, since the temporal types support comparison operations they can be used asakey in amap or asan
element of a set.

Input and output using the standard library streaming and facet capabilitiesis another key aspect of standard library
compatibility.

The proposal integrateswitht i me_t andt mby allowing dates and times to construct from these types.

Flexible Time Resolutions

Some of the most difficult issues with programming dates and times is selecting an appropriate epoch, resolution, and
size of internal representation. The choices are classic time and space tradeoffs. For this reason, providing a framework
for usersto provide customization of these elements greatly expands the utility of the library.

Thisisdiscussed in more detail in Underlying representations for dates and times.

Special Value Support

Specia values provide the ability to represent 'logical values with the various temporal types. For example, the ability
to represent not-a-date-time or infinities is helpful in many circumstances. Thisis similar to how floating point types
have values for not-a-number (NAN) and infinity. Infinities are useful in applications that need to represent concepts
like 'a-long-time-ago' or ‘forever'.

Specia values can apply to both time points and time durations and thus alter the rules of calculation. Here are some
code examples using specia values:

date d; //default construct to not_a date_tine

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

if (d.as_special() == NOT_A DATE TIME) { //true
/...

}

date_time inf(POSITIVE_INFINTY);

date_time t(date(2005, Jan, 1), hours(3));
(t <inf) {1/

al ways true unless t == positive infinity

Related Capabilities Not Included

There are other date-time related functionalities that are not included in this proposal. These decisions are primarily a
reflection of the author's experience of useful capabilitiesin the domain, while keeping the size of the proposal manage-
able. If a consensus of the committee believes any of these items should be incorporated, the author is willing to incor-
porate them.

These include:

* Recurring Intervals

» Timezone Database

» Loca Time Types

» Full support for leap seconds
* lteratorsintime

e Timers

Recurring Intervals

Recurring intervals are aform of generator that are useful in scheduling and other applications. A recurring interval is
typically defined by an initial interval and arecurrence duration. Conceptually thisis the idea of "schedule the meeting
for 9-10 every Monday starting on July 11, 2004". There are many options and variations on this theme. While these
could be included the use of recurring intervals is somewhat specialized and can be built on top of the existing founda-
tion.

Timezone Database

The timezone database capabilities of Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html] are
highly useful. The primary capability is to support construction of time zones from aregional specification asfollows:

t z_dat abase tz_db;
tz_db.load_fromfile("date_time_zonespec.csv");

boost: :shared_ptr<tine_zone_base> nyc_tz =
tz_db.tine_zone_fromregi on("Aneri cal/ New_York");

boost: :shared_ptr<ti ne_zone_base> phx_tz =
tz_db.tine_zone_fromregi on("Anerical/ Phoeni x");

However, this capability introduces the issue of maintaining a set of data associated with the world timezones. This data
changes frequently as governments change time zone rules. The management of the data makes this feature inappropri-
ate for standardization.

Local Time Types

10

http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html] has a Time Point type that holds atime
zone aswell asthe time value. While useful, this classis not included in the proposal as it adds significant complexity
to the design. For example, a dependency on shared_ptr is introduced to allow for efficient management of the time
zone types.

In addition, the overall benefit of thisintegrated classis somewhat limited. All the local time conversions and other de-
sired operations can be performed without this class.

Ilterators in Time

Iterators provide the ability to generate a set of dates or times based on some starting conditions and an ending point.
Based on the foundation of the core temporal types bi-directional iterators can be provided that enable the smple gener-
ation of calendars and other time-related constructs.

/lprint a series of dates

day_iterator start(date(2005,Jul,7));

day_iterator end(date(2005, Jul, 10));

std::copy(start, end, std::ostream.iterator<date>(std::cout, " \n"));

//make a list of 3 dates
std::list<date> dl;
std::copy(start, end, std::back_inserter(dl));

The Boost Date-Time Library [http://www.boost.org/libs/date _time/index.html] provides the following iterator types:
day iterator,week iterator,nmonth_iterator,year _iterator,tine_iterator,andl oc-
al time_iterator.

Timers

There are two primary types of timers:

» Elapsed Timers

e Countdown Timers

Elapsed timers are useful for measuring the duration of activities. For example:

//mcro timer reads clock at mcrosecond resol ution

mcro_timer m; //automatically starts tiner

cout << nt.elapsed() << endl;

sl eep(1);

/lelapsed will be about a second - sonething |ike: 00:00:01. 000123
cout << nt.elapsed() << endl;

sl eep(1);

/s}.pause(); //stop timng

st.resume(); //continue tining

Countdown timers provide the opposite interface from elapsed timers. Starting with afixed time duration, they gradu-
ally subtract time until they reach zero. For example, measuring the time left in a basketball game is an application for a
countdown timer.

Concepts Overview

11

http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

The date time domain isrich in terminology and problems. The following is abrief introduction to the concepts reflec-
ted in this proposal.

Points, Durations and Periods

There are 3 basic concepts that serve as the foundation for the representing times and dates:

e Time Point - an instant in the time continuum (dimensionless)
» Time Duration - alength of time unattached to a any time point

» Time Period - alength of time between two time points

asillustrated in the figure below.

Resolution: 1 day Resolution: 1 Microsecond
Point in Time Point in Time
l Time Period l Time Period
1 | 1 |

| | | | | | | |

| I | I | I | |

(!] (! M (g M M

2 8 8 8 S 3 B

o

F > F 5 FF 2

| 1 |

(- (. (. [(. [(-

- = - - = - =

> 3 3 3 2 3

- - - - - - -

-] — M L2 -] - %]
P -] —a
o M o
— %) o
a = -
-] on -]
S © S
-5 -]]
— o o
] - -
€ o o
o o o
-] = =

Durations can be used to measure how long something takes. Consider the following:

e the meeting took 2 hours
» theflight will take 45 minutes

» the program execution took 1.0020 seconds

12

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

» the congresstook 4 days to pass the bill

* current timeis-02:25:14 from launch of the rocket

» timeout should fire in 20 milli-seconds

The examples above illustrate how resolution plays into durations. The resolution of interest depends very much on the
application domain. And a single application may make broad use of many different resolutions. Also note that dura-
tions can have negative or positive values. Thisis useful in many applications and fitsinto the calculation rules de-

scribed later.

Time points describe when an event has or will occur. Consider the following:

» the meeting will be on June 10, 2004
 the baby was born on June 10, 2004 at 1:00 pm
» therocket will launch on 2004-Jun-10 15:00:25.030 EST

A single time point may be described by one or more 'labels of varying precision. For example,

2004- Jun- 10 15:00: 00 == 2004-Jun-10 3 pm
/1 UTC is Universal Time Coordinated - EDT i1s Eastern Daylight Tine
2004- Jun-10 15:00: 00 UTC == 2004-Jun-10 19:00: 00 EDT

Note that these label s belie the complexities of what time they actually represent. All these examples assume we are us-
ing a gregorian calendar (discussed more later). In addition, the first example puts aside the issue of local time adjust-
ments by leaving the time zone unspecified.

Time periods express arange of time. Consider the following:

» the meeting will start on June 10, 3 pm and last 2 hours

the trip will start June 10th and last 4 days

the rocket burn went from 2004-Jun-10 15:00:00.0030 to 2004-Jun-10 15:00:01.0050

» wewill arrive between June 1st and June 3rd.

These examples of time periods illustrate that atime period is simply a starting time and an ending time or a starting
time and atime duration. Periods are essential to the simplification of logic associated with planning and scheduling
systems. To accomplish this, periods can be shifted, intersected, merged, and combined in various ways. In addition,
they can be tested for adjacency, containment, and relative location.

These same concepts are discussed and reflected in "Patterns for things that change with time"
[http://martinfowler.com/ap2/timeNarrative.ntml] by Martin Fowler. More recently, these same concepts have also been
recognized in the SO 8601 standard

[http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetai ?7CSNUMBER=26780] for representations of dates
and times. Unlike dimensionless numbers, these different concepts serve different rolesin application development. My
personal background has included the devel opment of a planning and scheduling system used to schedul e thousands of
daily events for amajor satellite phone system. This experience, as well as development of other applications, led meto
many of the same concepts described by Fowler.

13

http://martinfowler.com/ap2/timeNarrative.html
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Resolution

Each of these temporal types has a'Resolution’ which is defined by the smallest representable duration. Thus, a'date' is
a'time point' with aresolution of 1 day. For representing a 'time' the resolution of the duration must increased. For ex-
ample, time_t isatime-point with aresolution of 1 second. The ptime
[http://www.boost.org/doc/html/date_time/posix_time.html#date_time.posix_time.ptime_class] classin the Boost Date-
Time Library [http://www.boost.org/libs/date_time/index.html] has an adjustable resolution typically set at 1 micro-
second or 1 nano-second.

The smallest duration representable within dat e, days, and dat e_per i od isone day. Thusthese typeshaveares-
olution of one day. Other temporal types such ashour s andm | | i seconds provide higher resolutions.

Calendar and Time Systems

Calendars describe the rules for for mapping the observable solar cyclesinto patterns such as days, weeks, months, and
years. The Gregorian system, adopted in the sixteenth century, is the most widely used calendar system today. It defines
the sequence of days and monthsin ayear, aswell as adjustments (such as leap years). The proposal uses a'proleptic
Gregorian' calendar which extends the Gregorian system back in time prior to it's adoption.

The SO Calendar, defined in the 1SO 8601 standard

[http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetail ?7CSNUMBER=26780], maps to the Gregorian calen-
dar, but has a unique technique for calculating week numbers. This proposal provides direct support for calculation of
I SO week numbers. The SO Week Data Calendar [http://personal .ecu.edu/mccartyr/isowdcal .html] illustrates the iso
week information.

There are many other calendar systems such as the Chinese, Mayan, Islamic, and Hebrew. This proposal does not at-
tempt to provide direct extensibility to all other calendar systems. However, the concepts reflected in the proposal can
be applied to other calendar systems which differ in the details of how days are labeled and how concepts such as years
and months are treated.

A Time system provides all these categories of temporal types as well as the rules for labeling and calculating with time
points. These systems may include additional adjustment rules such as 'leap seconds.

Epoch Time
For the calculation of dates and timesit is convenient to calculate using a count of days, seconds, or some other time

unit starting from a particular point in the time continuum. The starting point for this count is called the Epoch Time.
The Epochtimeforti me_t is1/1/1900 00:00:00.

Leap Seconds

Like leap years, leap seconds help keep a clock measured time in alignment with observed solar times. Leap yearsfol-
low aregular pattern while leap seconds are declared as the need arises due to wobbles in the earth's rotation. The irreg-
ular nature of leap seconds makes them difficult to incorporate into computer based time systems.

More information on leap seconds is described at the US Navy web site [http://tycho.usno.navy.mil/leapsec.html].

Time Zones and Local Time
Most local time systems are based on Coordinated Universal Time (UTC) but are also adjusted for earth rotation so that

daylight hours are similar everywhere. In addition, some local times include Daylight Savings Time (DST) adjustments
to shift the daylight hours during the summer.

Coordinated Universal Time - UTC

UTC (Coordinated Universal Time) is awidely used standard based on the solar time at the Prime Meridian. Formerly
known as Greenwich Mean Time (GMT) it is also often referred to as'Zulu Time' by the military organizations.

UTC isadjusted for earth rotation at longitude O by the use of Leap Seconds.

14

http://www.boost.org/doc/html/date_time/posix_time.html#date_time.posix_time.ptime_class
http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780
http://personal.ecu.edu/mccartyr/isowdcal.html
http://tycho.usno.navy.mil/leapsec.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Daylight Savings Time - DST

Daylight Savings Time (called Summer Time in Europe) adjusts the clock forward during summer months so that the
‘active’ hours match the hours of daylight. This practice became widespread during the twentieth century. Wikipedia
provides details on the practice [http://en.wikipedia.org/wiki/Daylight_saving_time].

For computer programs, DST presents a challenge. In addition to the complex rules that define the start and end of
DST, the jJumping of times' creates

e ambiguoustime labels

e invalidtimelabels

Consider the switch to daylight savings for the eastern time zone in the United States. For 2005 this happened on April
3rd at 02:00:00 local time. During this transition, the clock ticks from 01:59:59 to 03:00:00. Thus, the time labels from
02:00:00 to 02:59:59 are said to be invalid.

005- Apr-03 01:00: 00 EST
005- Apr-03 01:30: 00 EST
005- Apr-03 03: 00: 00 EDT

/12
/12
/12
/1 2005- Apr-03 03: 30: 00 EDT

During the switch back from daylight savings time the problem of ambiguous time labels occurs. That is, atime without
an adornment for daylight savings cannot be calculated to be clearly in, or out of, daylight savingstime. Thus, in the
eastern United States timezone, on the switch back from daylight savings, the times between 01:00:00 and 01:59:59 re-
peat twice.

2005- Cct - 30 00: 30: 00 EDT
2005-Cct-30 01:00: 00 EDT
2005-Cct-30 01:30: 00 EDT
2005-Cct-30 01:00: 00 EST
2005-Cct-30 01:30:00 EST

/1
/1
/1
/1
/1
/12005- Cct -30 02: 00: 00 EST

Clocks

A Clock Device is software component (tied to some hardware) that provides the current date or time with respect to a
time system. A clock can measure the current time to a known resolution which may be higher, or lower, than a particu-
lar time representation.

Different software systems have different needs for software clocks. Many modern applications need high resolution,
millisecond or higher, clock measurements. Modern computers routinely provide these higher resolution clocks. In ad-
dition, dedicated clock hardware often provides even higher level resolutions than typical computer hardware provides.

Impact on the Standard

Thisisapure library proposal, it does not add any new language features. It does include changes to the existing facets
to support enhanced date-time input and outpuit.

Limitations of the Current C++ Standard

The current C/C++ standard library recognizes the need for tools to manipulate dates and times. Although useful, the

15

http://en.wikipedia.org/wiki/Daylight_saving_time
http://en.wikipedia.org/wiki/Daylight_saving_time

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

typesin the current standard are mostly derived from the C library and do not reflect modern practice.

Some of the key issues with the current capabilities include:

» limitations of the time ranges and resolution provideby t i me_t
» al functions limited to one second time resolution

* no distinction between durations and pointsin time

» lack of symmetry inti me_get andti ne_put facets

» timerange provided by t mis unspecified

e noway to represent only adate

Theti me_t type provided in the C standard has a beginning epoch of 1970-Jan-1 00:00:00. For any application that
needs to represent times prior to 1970t i me_t isinsufficient. Because of this, simple applications like representing
birthdays cannot be written using time_t. Overall, the core function of time _t isto serve as an interface to computer
clocks. Unfortunately, with aresolution of one second it isinsufficient for many modern applications which require
fractional seconds to measure event times. These applications cannot uset i me_t or t mto represent times.

Another limitation with the current standard is that it does not provide elegant support for comparison and mathematical
operations on time values. For example, consider the following 'typical’ date manipulation code:

//only want to calculate with dates, but tine_t
//doesn't support that...

time_t start_tinme(0);

start_time += 5%(60*60*24) + 2*(60*60*24*7);

A value object approach has some significant advantages in code clarity:

date d(1970, Jan, 1);
d += days(5) + weeks(2);

Clearly the first code example could be simplified by the use of constants and such, but the lack of a standard here
means that unclear code isall to frequently the norm. Also, constants are insufficient because some time durations
(months and years) are not fixed lengths of time. A month variesin length from 28 to 31 days and ayear variesin
length from 365 to 366 days. Thisissueis discussed in more detail in the section on Arithmetic Operations on Temporal
Types.

Thet min the current standard structure is used largely for input-output using time_get and time_put. Unfortunately the
t mstructure provided is a bit ambiguous about the range of times supported. Thefieldt m year isdefined to start at
1900. It isunclear if years prior to 1900 (negative values) are supported. Many applications need to support year repres-
entations prior to 1900 making this ambiguity an issue for writing portable output code based ont m

Changes to the Current time_get and time_put Facets

This proposal includes provisions for advanced input and output of date-time values. To support this, additional format-
ting flags are introduced to the existing t i me_put facet. In addition, methods are added tothet i ne_get facet to
provide for format-based parsing of dates and times. Thisis described in more detail below.

One major issue for the library isto support symmetry of input and output operations. For example, it is reasonable to

16

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

expect that adat e, or other temporal type, can be output to a stream and then read back in. For example:

date d(2004, Jan, 1);

std::stringstream ss;

ss << d; //calls “time_put® with format %-%- %
/lss.str() == "2004-Jan-01"

date d2; //not_a_date_tine

ss >> d2; //can't inplement directly with current “tinme_get’

Thecurrentti me_get facet does not currently provide full support for format-based input. Thisis aresult of the
ti me_get facet not providing the ability to set input formatswhilet i me_put provides for sophisticated formatting
viaformat strings. Specifically note the signatures of get _dat e and put :

time_get<...
iter_type get_date(iter_type s, iter_type end,
i 0os_base& f, ios_base::iostate& err,
tnt t) const; //no fornat pattern here

time_put<...
iter_type put(iter_type s, ios_base& f,
char _type fill, const tnf tnb,
const charT* pattern, const charT* pattern_end) const;

Thepatternandpattern_end parameter provide for the flexible customization of date output. So, in essence, a
new dat e_get isneeded that supports the following signature:

time_get<...
iter_type get_date(iter_type s, iter_type end,
i 0s_base& f, ios_base::iostate& err,
const charT* pattern, const charT* pat_end, //<-- added paraneters
tnt t) const;

Note that the library working group already has recognized that the current state of these facets makes correct imple-
mentations difficult in [http://www.open-std.org/jtcl/sc22/wg21/docs/lwg-active.html#461 DR 461]. Adding format
parameters should improve the implementability as has been demonstrated in the Boost Date-Time Library
[http://www.boost.org/libs/date_time/index.html].

In addition to enhancements to support format-based input, this proposal expands the set of format flags to support ad-
ditional concepts such as fractional seconds. These additional format flags are described further in Extensions to
time_put Format Flags.

Additions to Clock Interfaces

The current standard providesfor st d: : | ocal ti me andst d: : gnt i me functionsto retrieve locally adjusted and
UTC times respectively. The resolution of these callsis one second. This proposal recommends providing equivalent
functions that provide microsecond resolution. Many platforms have clocks supporting microsecond resolution. This
higher resolution isimportant for many modern applications. Proprietary versions of these functions exist on common
platforms. Finally, the higher resolution can be made optional if the platform does not support the higher resolution.
The approach of the proposal to clocks allows for the addition other clock device implementations.

Other Standards and Related Work

17

http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Other C++ Libraries

There are so many date-time libraries for C++ and other languages it would be literally impossible to list them all here.
Some important examples include the Rogue Wave library, Recursion Software C++ Toolkit
[http://Iwww.recursionsw.com/cplus_documentation.html] (originally ObjectSpace.foundations) library, Microsoft
Foundation Classes, IBM ICU.

Looking at many of these libraries there are lots of differences. However, some important recurring themes emerge:

* representation of dates only
e representation of dates and times
* representation of time durations

» support for time zones and local time adjustments

The following sections highlight some of the key classes and features of these libraries.

Rogue Wave

The Rogue Wave libraries have long provided support for temporal programming. The Rogue Wave libraries include

several key typesincluding:

* RWDat eTi ne [http://www.roguewave.com/support/docs/sourcepro/tool sref/rwdatetime.html] - date and time to
millisecond

* RWZone [http://www.roguewave.com/support/docs/sourcepro/tool sref/rwzone.html] - time zone abstraction

* RWZoneSi npl e [http://www.roguewave.com/support/docs/sourcepro/tool sref/rwzonesimple.html] - time zone
class

* RWDat e [http://www.roguewave.com/support/docs/sourcepro/tool sref/rwdate.html] - just a date
* RWIi ner [http://www.roguewave.com/support/docs/sourcepro/tool sref/rwtimer.html] - second level resolution
« RWC ockTi ner [http://www.roguewave.com/support/docs/sourcepro/tool sref/rwclocktimer.htmi] - short interval

timer (using clock limits to ~30 minutes on some platforms)

One significant feature of the Rogue Wave librariesis the representation of 'special values. Called 'Sentinels in the
Rogue Wave library, they allow for the representation of special temporal values such as'Not A Date Time' or 'Infinity".
Thisissimilar to the specia values concepts provided in this proposal.

Recursion Software Time<Toolkit>

The Recursion Software C++ Toolkit [http://www.recursionsw.com/cplus_documentation.html] library supports severa
key typesincluding:

» dat e -adate

e tinme-a24hourtime durationto microsecond resolution

» date_and_ti e - date plusatime

e tineperiod-equivaenttotime duration concept in this proposal

18

http://www.recursionsw.com/cplus_documentation.html
http://www.roguewave.com/support/docs/sourcepro/toolsref/rwdatetime.html
http://www.roguewave.com/support/docs/sourcepro/toolsref/rwzone.html
http://www.roguewave.com/support/docs/sourcepro/toolsref/rwzonesimple.html
http://www.roguewave.com/support/docs/sourcepro/toolsref/rwdate.html
http://www.roguewave.com/support/docs/sourcepro/toolsref/rwtimer.html
http://www.roguewave.com/support/docs/sourcepro/toolsref/rwclocktimer.html
http://www.recursionsw.com/cplus_documentation.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

» stopwatch -atimer

* tinmezone - encapsulation of daylight savings and UTC offset information

Microsoft Foundation Classes

The Microsoft Foundation Classes provide two primary classes for manipulation of dates and times: CTi ne
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_MFC_CTime.asp] and CTi meSpan

[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_ctimespan.asp]. CTi e isapointin
time with aresolution of one second. CTi neSpan isatime duration. Essentially small value types that wrap the C lib-
rary, these classes create a basic C++ interface for application devel opers.

ICU Library

The IBM International Components for Unicode (ICU) libraries have several date-time related capabilities. The ICU
date-time user guide [http://icu.sourceforge.net/userguide/dateTime.html] provides more information on this C++ lib-
rary. Thislibrary provides aclass UDat e to represent dates. In addition, ICU includes a TimeZone class
[http://icu.sourceforge.net/userguide/dateTimezone.html] to provide for localization of dates.

Other Language Libraries

Most modern languages support a variety of types to support date-time programming.

JAVA Libraries

JAVA provides a number of different types for the representation of dates and times. These include

» Date[http://java.sun.com/j2se/1.5.0/docs/api/javalutil/Date.html]

» Calendar [http://java.sun.com/j2se/1.5.0/docd api/javalutil/Cal endar.html] <-- Gregorian Calendar
[http://java.sun.com/j2se/1.5.0/docs api/javalutil/GregorianCal endar.html]

e TimeZone [http://java.sun.com/j2se/1.5.0/docs/ api/javalutil/ TimeZone.html] <-- SimpleTimeZone
[http://java.sun.com/j2se/1.5.0/docd api/javalutil/SimpleTimeZone.html]

» DateFormat [http://java.sun.com/j2se/1.5.0/docs/api/javaltext/DateFormat.html] <-- SimpleDateFormat
[http://java.sun.com/j2se/1.5.0/docs api/javaltext/SimpleDateFormat.html]

Confusingly, the JAVA Date [http://java.sun.com/j2se/1.5.0/docs/api/javalutil/Date.html] actually represents atime to
millisecond resolution. It serves as the primary temporal type provided by the JAVA foundation libraries. Calendar
[http://java.sun.com/j2se/1.5.0/docs/api/javalutil/Calendar.html] is the base class for Gregorian Calendar
[http:/ljava.sun.com/j2se/1.5.0/docs api/javalutil/GregorianCal endar.html] that provides arithmetic capabilities with
times. Locale specific formatting and parsing is specified by DateFormat

[http://java.sun.com/j2se/1.5.0/docs/ api/javaltext/DateFormat.html] and implemented using format flags in the imple-
mentation SimpleDateFormat [http://java.sun.com/j2se/1.5.0/docs/api/javaltext/SimpleDateFormat.html]. TimeZone
[http://java.sun.com/j2se/1.5.0/doc/api/javalutil/ TimeZone.html] provides an interface and SimpleTimeZone
[http://java.sun.com/j2se/1.5.0/docs/api/javalutil/SimpleTimeZone.html] provides an implementation for performing
local time adjustments.

Python Libraries

The Python Date Time Module [http://www.python.org/doc/2.4.1/modul e-datetime.html] provides a number of differ-
ent types for the representation of dates and times. These include

19

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_MFC_CTime.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_mfc_ctimespan.asp
http://icu.sourceforge.net/userguide/dateTime.html
http://icu.sourceforge.net/userguide/dateTime.html
http://icu.sourceforge.net/userguide/dateTimezone.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/GregorianCalendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/TimeZone.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/SimpleTimeZone.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Date.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/GregorianCalendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/TimeZone.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/SimpleTimeZone.html
http://www.python.org/doc/2.4.1/module-datetime.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

o date [http://www.python.org/doc/2.4.1/datetime-date.html] -- a date type
o datetime [http://www.python.org/doc/2.4.1/datetime-datetime.html] -- a date and time combined
» timedelta [http://www.python.org/doc/2.4.1/datetime-timedelta.html] -- atime duration type

o tzinfo [http://www.python.org/doc/2.4.1/datetime-tzinfo.html] - time zone information

The timedelta [http://www.python.org/doc/2.4.1/datetime-timedel ta.html] classis an example of the time duration
concept. datetime [http://www.python.org/doc/2.4.1/datetime-datetime.html] and date
[http://Iwww.python.org/doc/2.4.1/datetime-date.html] are time pointsthat are similar tothedat e_ti ne and dat e
classesin this proposal.

ISO 8601 - Representation of Dates and Times

The SO 8601 standard [http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetail 2ZCSNUMBER=26780] defines
an international standard for formatting of dates and times. Conceptually, 1SO 8601 provides for the representation of
lengths of time, pointsin time, and intervals of time at different resolutions. Most of the concepts of time representation
in the ISO 8601 standard [http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetail ?CSNUMBER=26780], with
the exception of recurring intervals, are reflected in this proposal. In addition, the proposal provides support for input
and output of dates and times as specified in SO 8601.

SO 8601 provides for two main format types. normal and extended. The normal representation represents a date or
time using numeric values starting at the largest time division down. For example adate isrepresented asYYYYMM-
DD where YYYY isafour digit specification of the year, MM is atwo digit specification of amonth and DD isatwo
digit specification of aday.

Some examples of Normal representation include:

20040301 is March 1, 2004
20040301T020559,01 is March 1, 2005 02: 05:59.01

The extended form includes additional punctuation and thusis a bit easier for humans to read:

2004-03-01 is March 1, 2004
2004- 03-01T02: 05: 59,01 is March 1, 2005 02: 05:59.01

One nice feature of 1SO 8601 is a consistent ordering of time components from larger to smaller. For example, years
before months before daysin the date.

This proposal provides direct support for iso 8601 formatting. For example, the facet classes provide for SO 8601 input
and output:

dat e d(2005, Jun, 25);

date_facet* facet(new date_facet());
facet->set_iso format();

cout . i mbue(l ocal e(cout.getloc(), facet));
cout << d << endl; //20050625
facet->set_iso_extended format();

cout << d << endl; //2005-06-25

While SO 8601 standard [http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetai 27CSNUMBER=26780]

20

http://www.python.org/doc/2.4.1/datetime-date.html
http://www.python.org/doc/2.4.1/datetime-datetime.html
http://www.python.org/doc/2.4.1/datetime-timedelta.html
http://www.python.org/doc/2.4.1/datetime-tzinfo.html
http://www.python.org/doc/2.4.1/datetime-timedelta.html
http://www.python.org/doc/2.4.1/datetime-datetime.html
http://www.python.org/doc/2.4.1/datetime-date.html
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

provides an excellent foundation for one standard set of input and output approaches, there are limits. Specifically 1SO
8601 does NOT provide for:

e using 'strings for names of elements (eg: 'September’ instead of 09)

* locdlization of date and time strings

e representation of time periods as open or closed ranges

full specification of time zones

So while this proposal provide direct support for input and output in SO formats, it provides a more sophisticated in-
put-output capability overall.

POSIX 1003.1 Timezone Representation

The IEEE 1003.1 POSIX standard provides atextual specification for the representation of timezones. Thisis summar-
ized asfollow:

"std offset [dst [offset],start[/tinme],end[/time]]" (W no spaces).

'std' specifies the abbreviating of the time zone name. [and 'T" indicate optional fields. 'offset’ is the offset from Univer-
sal Coordinated Time (UTC). 'dst' specifies the abbrev of the time zone during daylight savings time. The second offset
is how many hours changed during Daylight Savings Time (DST). 'start' and 'end’ are the dates when DST goes into,
and out of, effect. 'offset’ takes the form of:

[+]-1hh[:m{:ss]] {h=0-23, m s=0-59}
'time' and 'offset' take the same form. 'start' and 'end' can be one of three forms:

Mm w. d {mont h=1-12, week=1-5 (5 is always |ast), day=0-6}
Jn {n=1-365 Feb29 is never counted}
n {n=0-365 Feb29 is counted in | eap years}

The following is an example defining the timezone for the West Coast of the United States.

PST- 08PDT, 45/ 02, 310/ 02

Breaking this down:

PST- 08PDT, 45/ 02, 310/ 02
AYAYAY

AYAYAY

I I
| When Daylight Savings Tine (DST) is in effect the abbreviation is PDT (Pacific Daylight Tin

|
defines PST as the nornmal abbreviation

21

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

PST- 08PDT, 45/ 02, 310/ 02

ANN ANNNANN ANNNAN

| | Switch back from DST on day 310 02: 00: 00

I I

| Switch to DST is day 45 at 02: 00: 00 hours

I

Non DST of fset from Universal Coordinated Tinme (UTC) is -8 hours

The Posix Time Zone section describes the class posi x_t i me_zone that implements these rules.

C Standard Library

The current C standard library, via header <time.h> [http://www-ccs.ucsd.edu/c/time.html], provides types and func-
tions that form the basis of most current time manipulation programs. Thisincludestypessuchasti ne_t andt m as
well asfunctionssuchasgnt i ne, nkti nme,andstrftine.

The author is unaware of any formal proposalsto the C standard committee for changes to date and time. However,
David Tribble has a number of proposals that may be brought to the C committee at some point in the future.

» additional constraints on the time_t type [http://david.tribble.com/text/cOxtimet.htm]

» Long Time Type [http://david.tribble.com/text/cOxlongtime.html]

» Calendar Date Functions [http://david.tribble.com/text/cOxcal endar.html]

» Timezone Functions [http://david.tribble.com/text/cOxtimezone.html]

Overadl the proposalsin these papers are complementary to this proposal. The suggested enhancements to the C library
would serve as an excellent foundation for building the functionality provided in this proposal.

OMG/Corba Time Service

The Object Management Group (OMG) has defined two standards for timing services: Time Service
[http://mwww.omg.org/technol ogy/documents/formal /time_service.htm] and Enhanced Time Service
[http://www.omg.org/cgi-bin/doc?formal/04-10-04]. These standards serve as another example of a standard that re-
flects many of the core elements of this proposal. Some of the similar features of these services include:

* time period concepts

e timepoint resolutions to 100 nano seconds

» epoch from 1582

The current proposal would provide for the basis for simple integration with these services alowing an aternative im-
plementation of a clock from adistributed server.

Timezone Database

The Timezone Database [http://www.twinsun.com/tz/tz-link.htm] provides an open collection of timezone information
and tools.

A variety of operating systems provide an extension that provides The work captured in the timezone database demon-
strates much of the complexity associated with various time adjustments. Some of the interesting capabilities of the
timezone database include:

22

http://www-ccs.ucsd.edu/c/time.html
http://david.tribble.com/text/c0xtimet.htm
http://david.tribble.com/text/c0xlongtime.html
http://david.tribble.com/text/c0xcalendar.html
http://david.tribble.com/text/c0xtimezone.html
http://www.omg.org/technology/documents/formal/time_service.htm
http://www.omg.org/cgi-bin/doc?formal/04-10-04
http://www.twinsun.com/tz/tz-link.htm

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

* mapping of regions to timezones (eg: "america/phoenix™)

» representation of historical timezone data

While the Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html] provides a timezone capable of
performing similar functions, that capability is NOT part of this proposal. In addition, historical time zones are not dir-

ectly supported, although the base time zone and local time interactions allow for extended implementations to provide
this capability.

Boost Date-Time Library

The Boost Date-Time Library [http://www.boost.org/libs/date _time/index.html] serves as the primary foundation for
this proposal. Differences between the proposal and Boost date-time are outlined in Difference from Boost Date-Time.

Design

Overview of Design

This proposal dividesthe library interface into severa levels:

» CoreInterfaces
» Concrete Tempora Types
e Additiona Types

The coreinterfaces provide atemplated library core that supports flexible resolutions and other capabilities similar to
theway st d: : basi c_stri ng providesacore for string types. The concrete temporal types are built from the core
interfaces and realize a set of types that serve as the primary programmatic interface. Thisis similar to how
std::stringandstd::wstring provide concrete realizations that most C++ programmers use. The additional
types provide implementation of clocks, time zones, and input output facilities. These classes provide other capabilities
not offered directly in the temporal types. The figure below illustrates the various classes that make up the proposal.

23

http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Core Interfaces

: time_type time_type
impl DEES duration_type char_type
basic_date basic_duration basic_time_period ‘ basic_timezone
impl traits
basic_date_time ymd_type gregorian_calendar |

Concrete Temporal Types

date date_time time points

time periods

date_period date_time_period

time durations

days || weeks || months || years hours || minutes || seconds || milliseconds || microseconds | [nanoseconds

Additional Types

docks time_zones i/o facets

day_clock time_zone_base

second_clock 71 V\

microsecond_clock custom_time_zone | | posix_time_zone

date_time_facet

date_time_input_facet

Core Interfaces

The following classes make up the core interfaces of the library. The core interfaces are templates the separate aspects
of the key library interfaces from implementation so that additional temporal type variations can be provided. Typical
developers will not use these interfaces directly, but will use the temporal types based on these interfaces.

Type Name Description

basic_date Coreinterface for dates.

basic_time Coreinterface for combined date and time types.
basic_duration Coreinterface for duration types.

basic_time period Coreinterface for period types.

basic_time zone Coreinterface for time zones.

ymd_type Replacement for t mthat includes fractional seconds and

resolution information.

gregorian_calendar Core implementation of gregrorian / iso calendar.
YMD Types

To efficiently format dates and timesit is convenient to have a structure that represents the 'broken down' time. Thisis

24

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

similar to t mwithout the string values and with some additional fields to represent fractional seconds and other inform-
ation.

//struct to represent elements of a point in time
struct timepoint {

year _type year; /132 bit unsigned integer -- range depends on cal endar
week_type nonth; //short integer 1-12 -- zero flags invalid

short day_of _year; //short

short day_of week; //0-6 -- 0 == sunday

short week nunber; //1-53 - 0 indicates invalid

short hours; /10-24

short m nutes; //0-59

short seconds; /10-60 -- 60 is | eap second

short fractional seconds_count;
short frac_seconds_resolution; //increments of 10 only

For input and output this form isauseful tool.

Summary of Temporal Types

The temporal types provide the main programmer interface to the library. The temporal types are value types that
provide for efficient comparison, assignment, calculation, and other operations. In general, these types are designed to
approach the efficiency of aregular integer type in terms of size, comparison and calculation efficiency. Some of the
design decisions impacting these types is summarized in Tempora Types - Key Design Decisions.

Type Name Temporal Type Description

date point Represent a date using gregorian cal-
endar.

date period period Represent a date period using date and
days.

days duration Represent a count of days.

weeks duration Represent a count of weeks.

months duration Represent a count of months.

years duration Represent a count of years.

date time point Represent a combined date and time
with 1 microsecond resolution.

date_time period period Represent a period using date_time.

seconds duration Represent a count of seconds.

milliseconds duration Represent a count of milliseconds.

microseconds duration Represent a count of microseconds.

nanoseconds duration Represent a count of nanoseconds.

Note that user defined temporal types can be added as needed. For example, auser can use basic_date time to create a
time point with nanosecond level resolution. To accomplish this might require expanding the size of the underlying type
to 96 bits or changing the epoch times.

Arithmetic Operations on Temporal Types

These 3 temporal types form the foundation for enabling sophisticated cal culations using dates and times. For example,
no matter the resolution of time points and durations we can say that the following cal culations apply where --> means
resultsin'.

25

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Rule --> Result Type

Notes

Timepoint + Duration --> Timepoint

Valid only for durations of equal or greater resolution.

Timepoint - Duration --> Timepoint

Valid only for durations of equal or greater resolution.

Timepoint - Timepoint --> Duration

Timepoints of the same resolution only.

Duration + Duration --> Duration

In mixed resolution durations, higher resolution duration
must be on the left.

Duration - Duration --> Duration

In mixed resolution durations, higher resolution duration
must be on the left.

Duration * Integer --> Duration

Integer * Duration --> Duration

Duration / Integer --> Duration

Integer Division rules.

Duration + Timepoint --> Undefined

Compilation error.

Duration - Timepoint --> Undefined

Compilation error.

Timepoint + Timepoint --> Undefined

Compilation error.

Note that the above typing rules are somewhat different from those used in Boost Date-Time Library

[http://www.boost.org/libs/date_time/index.html]. After some experimenting with various solutions to handling multi-
resolution arithmetic, the proposed approach seems to offer a pragmatic approach that enables clean application coding
while avoiding truncation error surprises for application devel opers.

The effect of the above rules can be seen more clearly with some examples:

date d(...);
d += seconds(10); //conpilation error -- dates have resolution of 1 day
+= days(1); /1 ok.
/1 ok.

+= days(3) + weeks(2) /1 ok.
+= weeks(2) + days(2);

date_time dt(...);

d
d += nont hs(2);
d
d

//conpilation error
[/ mcrosecond resolution tinme point

dt += seconds(100); /1 ok.
dt += days(2); /1 ok.
dt += nanoseconds(1); //conpile error -- resolution insufficient

dt += microseconds(1); //ok.

In addition, to the rules above, there are additional rules associated with special value handling:

Rule--> Result Type

Notes

Timepoint(NADT) + Duration --> Timepoint(NADT)

Timepoint(co) + Duration --> Timepoint(co)

Timepoint + Duration(eo) --> Timepoint(co)

Timepoint - Duration(e) --> Timepoint(-co)

Timepoint(+o0) + Duration(-c) --> NADT

Duration(+o) + Duration(-c) --> NADT

Duration(e) * Zero --> NADT

Duration(e) * Integer(Not Zero) --> Duration()

Duration(+e) * -Integer --> Duration(-o)

Duration(e) / Integer --> Duration(co)

26

http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Lack of Communitivity for Some Operations

While most time durations behave exactly as would be expected by normal humeric operations, years and months ex-
hibit odd behavior because they are not of afixed length. That is, sometimes ayear is 365 days and sometimesit is 366
(leap year).

In addition to the basic capabilities above most mathematical operations on dates and times are reversible.

That is,

date d(2004, Jan, 1);
dl =d + nonths(1l); //dl == Feb 1
dl -= nonths(1); //dl ==d

However the following is a difficulty:

date d(2004, Jan, 31);

date d1 = d + nonths(1); //Feb 29

date d2 = d1 - nonths(1); //oops Jan 29th
dl - nonths(1) == d; //false.

Not all temporal types follow the same rules as integer typesin calculations. For example, months and years are not dir-
ectly convertible to a number of days. A month is between 28 and 31 days. A year is either 365 or in aleap year 366
days. Logic that needs to ‘add months' or 'add years needs to manage this issue.

The following W3C XML reference describes the proposed arithmetic rules in more detail XML Schema Adding Dura-
tions [http://www.w3.org/TR/xml schema-2/#adding-durations-to-dateTimes] .

Summary of Additional Types

The following are some additional classes that augment the temporal types to provide input/output and local time ad-
justment capabilities.

Type Name Description

time_facet Format based output facet for localization/customization
of output.

time_input_facet Format based input facet for |ocalizati on/customization of
input.

The library provides several clock types for measuring the current time to different levels of resolution.

Type Name Description

day_clock Measures the current time at day level resolution.
second_clock Measures the current time to one second resolution.
microsecond_clock Measures the current time to microsecond resolution.

The concrete time zone classes provide the ability to perform local time adjustments.

Type Name Description

time_zone hase Narrow char instantiation of basi ¢_ti ne_zone for use
withdate_ti ne.

27

http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes
http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Type Name Description

custom_time_zone Class that provides for the ability to provide custom
timezonesin an application.

posix_time_zone Provides implementation of Posix 1003.1 time zone spe-
cifications.

Exceptions for Errors

All errors are signaled by exceptions. While this makes the library less suitable for some contexts, exceptions are a usu-
al part of modern C++ code. Exceptions are thrown in the following circumstances:

» Attemptsto construct and invalid temporal type (eg: 2005-Feb-30)

» Using input streaming with exceptions enabled

All exceptions derive from std::out_of_range or std::logic_error and are summarized in the table below.

Type M ethod Exception Base Type Description
date constructor, operat- bad day of month std: :out_of ran |Thrown if day of
or>> ge month is out of range
[http://gce.gnu.org/onl | (eg: Jan 32)
inedocs/lib-

stdc++/latest-doxygen/
classstd 1 lout o

_range.html]
date constructor, operat- bad day of year std: :out_of _ran |Thrownif day of year
or>> ge isinvalid. (note thisis
[http://gce.gnu.org/onl |t.b.d. since thereisno
inedocy/lib- constructor)

stdc++/latest-doxygen/
classstd 1 lout o

_range.html]
date constructor, operat- bad_month std: :out _of _ran |Thrown if the spe-
or>> ge cified month is out of
[http://gce.gnu.org/onl |range (eg: month 13)
inedocs/lib-

stdc++/latest-doxygen/
classstd 1 lout of

_range.html]
date constructor, operat- bad year std: :out_of ran |Thrownif theyearis
or>> ge out of range (eg: >=
[http://gce.gnu.org/onl {10000, or < 1400)
inedocs/lib-

stdc++/latest-doxygen/
classstd 1 lout of
_range.html]

Extensions to time_put and Format Flags

The following table describes the new flags to be supported by t i me_put facet.

28

http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1out__of__range.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Flag Description

%f Fractional seconds and separator - always used even when
valueis zero.

%F Fractional seconds and separator - only output when non-
Zero.

%s Seconds separator and fractional seconds

%T Timein 24-hour notation %H:%M:%S (from strftime)

%q ISO time zone

2%Q I SO extended time zone

%or Timein AM/PM notation - same as '%l:%M :%S %op'
(from strftime)

%V I SO week number in range from 0 to 53 (from strftime)

%Z Time zone name - long (eg: 'Eastern Standard Time').

%ZP Posix time zone string (eg: EST-
05EDT+01,M4.1.0/02:00,M10.5.0/02:00

In addition to adding new formatting flags this proposal recommends changing the default formatting of dates and
times. The following table summarizes the proposed default i/o formats.

Temporal Type Format Example Comment
date %Y %b%d 2004-Jan-31
days None 45 No formatting or adornment
required
date_period [%6Y %b%d/%Y %b%d) [2004-Jan-31/2004-Feb-25]
date time %Y %b%d %H:%M:%S.%f |2004-Jan-31
05:10:31.00000030
time duration types %H:%M :%6S.%f 05:10:31.00000030
date_time period [%6Y %b%d/%Y %b%d) [2004- Jan-31/2004-Feb-25]

The main recommendation is that the date format use "%Y %b%d". This format is unambiguous and clear in all cases.
The four digit year avoids any confusion about the century. Using short characters for the month ensures differentiation
with the day of the month. For example, consider the following:

2004-01-02 //what's this date anyway?

Differences from Boost Date-Time

Some of the key differences between this proposal and the Boost Date-Time Library
[http://www.boost.org/libs/date_time/index.html] include:

» Namespaces (std::tr2 versus boost::gregorian, boost::posix_time, etc)

e ptineiscaleddate_tine

* No small typesfor temporal types (eg: nogr eg_day, gr eg_year, etc)

» Adjusting resolutions implementation

29

http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Summary of Key Design Decisions

Advantages of the Design

Some of the key advantages of the design include:

» efficient value types for programming with dates and times
» flexible input and output
» direct support for | SO standard calendar systems

* extensihility

The extensive use of value types makes programming with dates and times easy and natural for application program-
mers. The lack of virtual functions and other aspects of the underlying representations for dates and times, also make
the resulting code efficient and suitable in many contexts. Use of immutable types minimizes the required interfaces
and simplifies the user programming model. Using exceptions for errors furthers modern error handling practices and
ensures correctness.

Flexible format-based input and output integrated with iostreams dramatically eases the difficulties of handling differ-
ent date-time representations and localization.

The separation of clocks and temporal types as well as the template-based design provide for extensibility.

Limitations of the Design
The lack of virtual functions means that users cannot use inheritance to extend the temporal types.

The underlying representation of dates and times combined with the always valid after construction rules mean that ap-
plications that only perform input-output conversion will incur some performance overhead to convert to the internal
type and back. In practice this has not proven to be an issue with the Boost Date-Time Library
[http://www.boost.org/libs/date_time/index.html], but some applications with extreme performance requirements will
need to continue using approaches more optimized for input-output conversion.

Thereisalong list of related capabilities not included in this proposal. Thus users that need these additional capabilities
will need to build them or find them.

General Principles

Extensive Use of Value Types

In the realization of the date-time concepts Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html]
uses alarge number of value-type classes. As Kevlin Henney has defined in the from Boost.Any documentation
[http://mww.boost.org/doc/html/any/reference.html#any.VaueType]:

"Val ues are strongly informational objects for which

identity is not significant, i.e. the focus is principally

on their state content and any behavi or organi zed around that.
Anot her di stinguishing feature of values is their granularity:
normal |y fine-grained objects representing sinple concepts in
t he system such as quantities."

Thisis discussed more extensively in Objects of Value (pdf)
[http://www.two-sdg.demon.co.uk/curbral an/papers/ObjectsOf Value.pdf].

30

http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html
http://www.boost.org/doc/html/any/reference.html#any.ValueType

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Overdl, thelibrary consistently endows value types with the following properties:

» assignability with strong exception-safety
* copy constructible

e immutability

» awaysvalid after construction

» lessthan comparable

» streamable

These principles are key to the overall design of the proposal.

Templates, Interface Separation, and Extensibility

One key god of thelibrary isto allow for user extensibility. By providing templated interfaces users can replace thein-
ternal implementation of the type allowing for customized adjustments. Most users will not need to use this capability,
but for those in need of specia adjustments this element of the design is essential.

Some variations that this design alows are as follows:

» removal of special valueinterfacesto simplify arithmetic
» gpecia adjustments such as leap seconds
» specification of alternate time epochs

» gpecification of different calendar implementations

Just as other parts of the C++ standard library support extensibility, the date-time additions should be no different. Un-
fortunately different date-time applications have different needs for resolution support, efficiency, and special adjust-
ments. Hence a standard with no extensibility will exclude a significant set of application devel opers.

The extensibility is achieved by providing a core set of interfaces upon which concrete temporal types are implemented.

Using the Gregorian Calendar

The Gregorian Calendar is the basis for the SO 8601 standard

[http://www.iso.org/iso/en/Catal ogueDetail Page. Catal ogueDetail ?7CSNUMBER=26780] and is the mostly widely used
calendar system worldwide. Of course there are many other Calendar systems which are not supported by this proposal.
That said, many of the concepts in this proposal provide insight into how the new library can be extended to support
other calendars.

Since this proposal supports the representation of historic dates and times a decision must be made about how to handle
some of the anomalies and historic adjustments to the calendar. In addition, the proposal supports the representation of
dates prior to the historic adoption of the Gregorian Calendar.

The recommendation is for the calendar to support a proleptic version of the Gregorian Calendar. The proleptic system
extends the calendar into the past and assumes a monotonic representation of the calendar -- essentially ignoring histor-
ic adjustments. For most applications this representation is sufficient. However, for those requiring absolute accuracy a
new set of temporal types can be created by replacing the gregorian_calendar with one that performs the required ad-
justments.

31

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Separation of Date and Time Types

A different approach to the domain would eliminate the 'date’ types and just use 'date_time' when dates are used. The
disadvantage of this approach is that the 'date’ type is cumbersome for some applications. When storing a birthday, for
example, usually doesn't include the time of birth. In addition, the date type can be implemented using a smaller data
type (32 hits typically) thus providing space efficiencies.

Separation of Clocks and Temporal Types

Many date-time librariestie creation of atemporal type to the clock implementation. This proposal explicitly separates
the two so that temporal types can be ported to platforms that don't supply a hardware clock or have different clock cap-
abilities. A corollary to thisisthat high resolution time types (say microseconds and nanoseconds) are still available on
platforms that do not have hardware that supports these resolutions. These values might be read from afile, for ex-
ample. Finally, this separation makes the addition of new clocks, for example a network time clock or GPS time source,
fit naturally with the library interface.

Theresult of this design decision isthat retrieving a value from a clock device cannot be done directly from atime
point. So, for example, the following codeis not possible:

//nmythical interface that ties clock inplenentation to tine point
date_tinme t(NOW; //nakes a call to clock

Instead the interface in this proposal is as follows:

_tinme t1(mcrosecond_cl ock::universal _t
_tinme t2(mcrosecond_cl ock::local _tinme(
date_time t3(second_clock::local time()); /
_tinme t3(second_clock::local _tinme(tz));

me()); //UTCtime to m croseonds

); //Local time to m croseonds

Local time to seconds

/lLocal time in tine zone specified by tz

i
)
/

Temporal Types - Key Design Decisions
Assignability, Comparability, and Streamability

Assignability of the types means that the constructors and operators allow for natural use of the types:

time t(date(2004,Jan,1));// 2004-Jan-01 00: 00:00.0
/1...use t and then replace value with 100 seconds fromcurrent UTC time
t = second_cl ock: :universal _time() + seconds(100);

Because temporal types always construct to avalid value the assignment operator can offer the strong exception guar-
antee.

All the temporal types are support afull complement of comparison operators

 operator!=(const type& const
» operator==(const type&) const
 operator<(const type& const

» operator<=(const type&) const

32

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

 operator>(const type& const

* operator>=(const type& const
All temporal types are streamabl e supporting both input and outpuit.

e operator<<(std::ostream’ const type&)

e operator>>(std::istream’ type&)

See Summary of Additional Types for more information on format-based streaming of temporal types.

Immutability

With only a couple exceptions, the core temporal types are immutable. That is, once constructed they cannot be modi-
fied other than being assigned from another instance of that same type. For example, there is no way to change the
'month’ part of a date once it has been constructed. There are a couple reasons for this design decision. First, by keeping
these types immutable the supported interfaces are kept to a minimum. For asimple 'date’ class there would need to be
at least 3 additional functions (setMonth, setDay, setY ear) if the type was not immutable.

Thisis especidly true when consider the exception handling required for thistrivial case:

date d(2004, Jan, 31);
d. nont h(Feb); //hypothetical interface -- an exception would be generated

In the case of 'time' representations the interface becomes even more difficult and cumbersome. For example, what in-
terface should be supported for setting the fractional seconds of atime?

time t(...);
t.setMI1liSeconds(3); //a hypothetical 'set' interface

With a'set interface’ approach a new method is needed for every possible time resolution. Thelist islong and includes:
setHours, setMinutes, setSeconds, setTenths, setNano, setMilli, etc. This myriad of methods in the time class makes the
interface more cumbersome to understand and use. More troubling isthat it is not user extensible to a new duration
type. Instead of adding to the interface of the time point the use of additional duration types and operators is more nat-
ural and extensible. For example:

time t(date(2004,Jan,1));// 2004-Jan-01 00: 00: 00.0
t += mlliseconds(5) + nanoseconds(10);

Lack of Virtual Functions

All the core temporal types avoid the use of virtual functions in the implementation to ensure efficient use of memory.
In general, the goal isto make these temporal types behave asclosetot i me_t intermsof runtime efficiency asis
practical.

Note that a major departure from this approach is made to provide local time support. Whilel ocal _t i me does not
have any virtual functions, it usest i me_zone which isapure virtual base class. In addition, | ocal _t i ne interfaces
interchanget i me_zonesusing shar ed_pt r s. Thus the memory costs of manipulating| ocal _t i nesarehigher.

33

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

However, thisis reasonable given a need to support a variety of different approaches to providing time zones.

Always Valid After Construction

The temporal types are designed to always be valid after construction. Note that in this context, not - a- dat e-ti ne
isavaid value for adate. However, February 30th is never avalid date and will alwaysresultin abad_day excep-
tion. The main advantage of this approach is program correctness is maintained and checking for invalid valuesin pro-
gramsis minimized.

Enforcing initial construction rules means that no validation is required after the initial checking of the value. However,
it does have a cost in performance for construction of many of the temporal types. Also, not that in the case of time dur-
ations checking is normally not required since they are simply a count of some amount of time (eg: 5 hours). Experi-
ence with Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html] indicates that thisis an acceptable
cost to pay for an improved programming model.

Default Construction to not-a-date-time

Early versions of the Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html] did not support default
construction of temporal types such asdat e. However, users requested the addition of default construction for integra-
tion with standard library containers (eg: map keys need to be default constructable) and for input streaming.

The consensus decision was that default construction to the 'not-a-date-time' value was the most reasonabl e default.

Some libraries make the default construction of atime point to the current time. However, this creates serious scal abil-
ity issues when creating large numbers of dates and times with a default value only to be updated later.

Underlying representations for dates and times

The Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html] uses integer typesto represent all tem-
poral typessuch asdat e andt i me_dur at i on. There are several reasons for this decision:

» Highly efficient use of memory

» Fast comparison and calculations

» 'Lossless calculations

Some libraries choose to use doubles to represent temporal types. The problem with double typesis that they can trivi-
aly produce unexpected results with mathematical operations. This means the programmer must manage the potential
error associated with al date_time calculations. With an integer type underlying all calculation the error is limited only

to division operations which are not supported on most temporal types. For example, time points do not logically sup-
port division:

date d;
date d2 = d / 10; //what would this nean? Not all owed.

Durations do support division, so the programmer must be aware of the division rules:

/1 Thi s makes sense
days day_count (10);
days day_count = dc / 10; //defined == 1

Special Values

http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html
http://www.boost.org/libs/date_time/index.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

Specia values add significant complications to the design of the library. In particular, the logic of calculation is slower
and more complex for users to understand. In addition, input and output is made more complex since strings need to be
defined for the various default values.

At the same time these special values are extremely helpful when dealing with design issues related to dates and times.
One of these problemsiis the so-called 'Null object’ pattern. In this case, the 'not_a date time' special value. Thisaso
serves as a useful value for default construction. For more on this see always valid after construction. Infinities are use-
ful in anumber of contexts, but particularly when you want to specify the concepts like 'until further notice', 'long ago’,
or lasts 'forever'. Note that the Rogue Wave RWDateTime class supports a similar concept called sentinels.

In addition to infinities and not_a_date time the specia values include the minimum and maximum values. This allows
for rapid construction of the minimum or maximum date or time.

While special values increase the complexity of calculation they do not increase the size of the internal representation.
Boost.date time simply uses 3 of the values of the underlying type to represent the special values.

Input-Output Design Decisions

Overdl, the date-time extension for C++ should meet the following expectations:

» |ocalizable formatting and parsing
» reasonable and unambiguous default input and output form
e parameterized support for different character types

» full user customization of strings for months, weekdays, and specia values

Programmers expect all integer types to be localizable with regards to input and output streaming. Similarly, al of the
temporal types supported by the library should support input and output streaming. For example:

/1 Sinpl e exanpl e of date streaming functionality
std::stringstream ss("2004-Jan-31");

date d;

ss >> d;

std::cout << d; //prints 2004-Jan-31

Of course, there are other ways to specify a date which should also be parseable. For example, the 31st day of 2004 is
another way to say January 31st.

The current C/C++ standard library provides for date and time input output viathe time_put
[http://gce.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd 1 1time put.html] and time_get
[http://gce.gnu.org/onlinedocy/libstdc++/latest-doxygen/classstd 1 1time get.html] facets. The date-time extension
builds on this foundation to provide full format-based stream input and output for temporal types using facets. The facet
classes give the user full direct control over the strings used for both input and output.

See Extensions to time_put and Format Flags for more on the proposed default formats.

Local Time Adjustments

Local time adjustments are one of the more difficult issues for the design to address. Overall, the support for local time
adjustments has been lacking in most date-time library implementations. There are many reasons for the poor support
including:

35

http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1time__put.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/classstd_1_1time__get.html

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

» lack of standards in representation of time zones
» varying platform support
» complex rulesfor calculation of daylight savings rules

» complexity of input-output associated with time zones

The Posix 1003.1 specification provides key support for representation of time zones. While this standard is helpful, it
does not take into account for fully for time zone representations. For example, it is not uncommon to have 4 strings to
represent all the variations of the time zone: abbreviated forms for both standard and daylight adjusted times.

/14 representations of US eastern tine zone
EDT

EST

Eastern Daylight Tine

Eastern Standard Time

Posix 1003.1 cannot represent all these variations. In this proposal the time zone base provides for representation of
these four variations. When used in conjunction with the posix_time_zone the long strings fall back to using the short
abbreviations. However, the time_zone allows users to provide all these elements enabling sophisticated input and out-
put.

>From an application devel opment perspective there are several key adjustment scenarios:

adjust to alocal time when reading the current time

adjust from one time zone to another
* handle any daylight savings time adjustments

e settime zones based on user input

This proposal supports these key use cases by providing an extensible set of time zone types. In addition, the clock in-
terfaces support adjusting to both the local time as specified on the machine as well as alocal time specified by an arbit-
rary time zone.

Proposed Text

Note that the following section is not a complete formal specification, but arather arough draft to use as a starting
point for the final proposal.

Core Changes

/I pl acehol der for details to time_put/tine_get and other changes

Core Classes

Enumerations

36

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

/lused for special value construction
enum speci al _val ues {negative_infinity, positive_infinity, not_a_date tine,
max_date_time, mn_date_time, not_special };

Basic Duration

tenpl at e<cl ass duration_rep_traits>
cl ass basic_duration

{

public:
typedef typenane duration_rep_traits::int_type duration_rep_type;
t ypedef typenane duration_rep_traits::inpl_type duration_rep;

/lconstructors
explicit basic_duration(duration_rep day_count);
basi c_durati on(speci al _val ues);

duration_rep get_rep() const;
duration_rep get_broken_down_duration() const;

/I'special value access
bool i s_special () const;
speci al _val ues as_special () const;

static duration_type unit();

// conpari son operators

bool operator< (const date_duration&) const;
bool operator<= (const date_duration&) const;
bool operator> (const date_duration&) const;
bool operator>= (const date_duration&) const;
bool operator== (const date_duration&) const;
bool operator!= (const date_duration&) const;

/larithmetic operations

duration_type operator- (const duration_type& const;
duration_type operator-= (const duration_type&);
duration_type operator+ (const duration_type& const;
duration_type operator+= (const duration_type&);
duration_type operator/= (int);

duration_type operator/ (int);

duration_type operator* (int) const;

duration_type operator*= (int);

/1 Sign inversion
date_duration operator-() const;

/1! return sign information (todo?)
bool is_negative() const

Basic Gregorian Calendar

tenpl at e<t ypenane ynd_type_, typename date_int_type_>
cl ass basi c_gregorian_cal endar {
public:
typedef ynd_type_ ynmd_type;
typedef typenane ynd_type::nonth_type nonth_type;
typedef typenane ynd_type::day_type day_type;
typedef typenane ynd_type::year _type year_type;
typedef date_int_type_date_int_type;

37

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

static unsigned short day_of_week (const ynd_type& ynd);
static int week _nunber (const ynd_type&ynd);
static date_int_type day_nunber (const ynd_type& ynd);
static ynd_type from. day_nunber (date_int_type);
static date_int_type julian_day_nunber(const ynd_type& ynd);
static |ong nodj ul | an_day_nunber (const ynd_type& ynd);
static ynd_type fromjulian_day_nunber(date_int_type);
static ynd_type from_nodj ul i an_day_nunber (| ong) ;
static bool is_|l eap_year(year _type);
static unsigned short end_of nonth_day(year_type y, nmonth_type m;
static ynd_type epoch();
static unsigned short days_in_week();

b

Basic Date

t enpl at e<cl ass date_i npl >
cl ass basic_date {
public:
t ypedef typenane date_inpl::cal endar_type cal endar_type;

/lyear, nonth, day types

typedef typenane date_inpl::year_type year_type;

t ypedef typenane date_inpl::nonth_type nonth_type;

typedef typenane date_inpl::day_type day_type;

typedef typenane date_inpl::ynd_type ynd_t ype;

typedef typenane date_inpl::day_of week_type day_of _week_t ype;
typedef typenane date_inpl::day_of year_type day_of _year _type;
typedef typenane date_inpl::week_of _year_type week_of _year_type;

t ypedef typenane date_inpl::weekday_ type weekday_type;
typedef typenane date_i npl::week_of nonth_type week_of nonth_type;

t ypedef typenane date_inpl::special _val ues_type special _val ues_type;
typedef typenane date_inpl::date_duration_type date_duration_type;
typedef typenane date_inpl::date_int_type date_int_type;
//constructors
basi c_date(year_type y, nonth_type m day_type d);
basi c_dat e(const ynd_type& ynd);
basi c_dat e(year_type y, day_of _year_type doy);
basi c_dat e(const basic_date& rhs);
//constructs sonething |ike: Sunday in Wek 50 of year 2004
basi c_date(year_type y, week_of year_type week_nunber, weekday_type wd);

/lconstructs sonething like: 3rd Monday in Feb of 2004
basi c_date(year_type y, nonth_type m week_of _nonth_type week_number, weekday_type wd);

basi c_date(std::time_t t);
basi c_date(const std::tm% datetnj;

//construct positive/negative infinity max or mn date
basi c_dat e(speci al _val ues_type sv);

//not-a-date-tine
basi c_date();

38

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

// Basi ¢ accessors

}s

year _type year () const;

nont h_t ype nmont h() const;

day_type day() const;

day_of _week_type day_of _week() const; //eg: Sun, Mon,

/l addi ti onal accessors

day_of year_type day_of _year() const; //1..365 or

week_of _year _type week_nunber() const; //1SO 8601 week nunber
date_int_type day_nunber () const; //Return the day nunber since start
basi c_date end_of _month() const; //Return the I|ast

/ /I speci al val ue accessors

bool is_special () const;

speci al _val ues_type as_special () const;

// conver si on accessors

time_t to_time_t() const;

ymd_t ype year _nmont h_day() const; //Get ymd structure

/'l Conversion to julian cal endar

date_int_type julian_day()
nmodj ul i an_day()

| ong

const
const

//cal cul ati on accessors

date_duration_type days_until
date_durati on_type days_before (weekday_type)

basi c_date
basi c_date

)

(weekday_type) const;

const;

next (weekday_type) const;
previ ous (weekday_type) const;

// conpari son operators

bool operator< (const basic_dateg&)
bool operator<= (const basic_date&)
bool operator> (const basic_dateg&)
bool operator>= (const basic_date&)
bool operator== (const basic_dateg&)
bool operator!= (const basic_date&)
/larithnetic operations
date_duration_type operator- (const
basi c_date operator- (const
basi c_date operator-= (const
basi c_date operator+ (const

basi c_date

t enpl at e<cl ass date_type

oper at or += (const

const;
const;
const;
const;
const;
const;

basi c_dat e&)

const;

1..366 (for |eap year)
1..53

dat e_duration_type&) const;
date_duration_type&)
duration_type&) const;
dat e_duration_type&)

date_

typename string_type>

date_type fromstring(const string_type& date_string
const string_type format_string);

tenpl ate <cl ass CharT,

class TraitsT>

std:: basic_ostreamkCharT, TraitsT>&

oper at or <<(std:: basic_ostreankCharT, TraitsT>& os,

tenpl ate <cl ass CharT,

class Traits>

std::basic_istrean<kCharT, Traits>&

operator>>(std::basic_istreankCharT, Traits>& is,

/| Exception classes for construction of dates

cl ass bad_day_of _nonth :

{}
c

c

{}
c

class invalid_tinme_|abe

ass bad_year
ass bad_nonth :

ass bad_weekday

public std::out_of _range

public std::out_of_range

public std::out_of_range

const dateg&);

dat e&) ;

public std::out_of _range

// Exception class for conversions of |ocal tine values

{1

public std::logic_error

of the epoch

day of the current nonth

39

N1900=05-0160 Proposal to Add Date-Time to the

C++ Standard Library 0.75

Clock Devices

t enpl at e<cl ass date_type>

cl ass day_cl ock

public:

t ypedef typenane date_type::ynd_type ynd_type
static typename date_type::ynd_type |ocal _day_ynd()
static typename date_type::ynd_type universal _day_ynd()

static date_type |ocal _day();
static date_type universal _day();

Time Durations

tenpl ate<cl ass T, typename rep_type>
class basic_time_duration

{
public:

typedef T duration_type

typedef rep_type
t ypedef typenane
t ypedef typenane
t ypedef typenane
t ypedef typenane
t ypedef typenane
t ypedef typenane
t ypedef typenane

time_duration();

traits_type;
rep_type::
rep_type::
rep_type::
rep_type::
rep_type::
rep_type::

rep_type

//the subcl ass

:day_type day_type

hour _type hour _type

mn_type mn_type;

sec_type sec_type

fractional _seconds_type fractional _seconds_type
tick_type tick_type

crinmpl _type inpl_type

time_duration(hour_type hours,
m n_type mnutes
sec_type seconds=0
fractional _seconds_type frac_sec = 0);

ti me_duration(const tinme_duration<T, rep_type>& other)
time_duration(special _val ues sv);

static duration_type unit(); //support for periods

hour _type hours()

const

m n_type minutes() const
sec_type seconds() const
fractional _seconds_type fractional _seconds() const;

sec_type total _seconds()
tick_type total _nilliseconds() const;
tick_type total _nanoseconds() const;
tick_type total _mcroseconds() const;

/[/traits informat

static unsigned short

ion

)

const ;

num fractional _digits()

static tick_type ticks_per_second();
static time_resolutions resolution();

/ /I speci al val ue accessors

bool is_special ()

const

bool is_pos_infinity() const
bool is neg infinity() const
bool is _not_a date tinme() const

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

//sign inversion
duration_type operator-() const

bool is_negative() const

bool operator< (const
bool operator<= (const

ti me_duration& const;
ti
bool operator> (const ti
ti
ti
t

_duration& const;
_duration& const;
_duration& const;
_duration& const;
_duration& const;

bool operator>= (const
bool operator== (const
bool operator!= (const

/larithnetic operations

duration_type operator- (const duration_type& d) const
duration_type operator-=(const duration_type& d)
duration_type operator+ (const duration_type& d) const
duration_type operator+=(const duration_type& d)
duration_type operator/ (int divisor) const
duration_type operator/=(int divisor)

duration_type operator* (int rhs) const

duration_type operator*=(int divisor)

tick_type ticks() const

b
//typedef to the given resolution

// Concrete Tinme Duration instanciations
cl ass hours;

cl ass m nutes;

cl ass seconds;

class milliseconds;

cl ass mi croseconds;

cl ass nanoseconds;

Basic Date_Time Type

tenplate <class T, class tinme_systens
cl ass basic_date_tine

{
public:
typedef T tine_type
typedef typenane tine_system:time_rep_type tinme_rep_type
typedef typenane tine_system:date_type date_type;
typedef typenane tine_system:date_duration_type date_duration_type;
typedef typenane tine_system:tinme_duration_type tinme_duration_type;

basi c_date_ti ne(const date_type& day,
const tine_duration_type& td)

base_ti me(speci al _val ues sv)
base_time(const time_rep_type& rhs);

date_type date() const
time_duration_type time_of _day() const

/ /I speci al val ue accessor

bool is_not_a _date_ time() const
bool is_infinity() const

bool is_pos_infinity() const
bool is_neg_infinity() const
bool is_special () const

// conpari son operators
bool operator< (const time_type&) const;

41

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

bool operator<= (const
bool operator> (const

ti me_type&) const;
tine
bool operator>= (const tinme
tinme
tine

t
_type&) const;
type&) const;

bool operator== (const t

bool operator!= (const t

_type&) const;

_type&) const;

i me_duration_type operator-(const tinme_type& rhs) const

i me_type operator+(const date_duration_type& dd) const

i me_type operator+=(const date_duration_type& dd)

ne_type operator-(const date_duration_type& dd) const

ne_type operator-=(const date_duration_type& dd)

i me_type operator+(const time_duration_type& td) const

i me_type operator+=(const tinme_duration_type& td)
nme_type operator-(const time_duration_type& rhs) const
nme_type operator-=(const time_duration_type& td)

b

Operators

date_time operator+ (const date_tine& t, const nmonths& m
date_time operator+=(date_tine& t, const nonths& nm
date_time operator- (const date_tine& t, const nmonths& m
date_time operator-=(date_tinme& t, const nonths& m
date_time operator+ (const date_tine& t, const years& y)
date_time operator+=(date_tinme& t, const years& y)
date_time operator- (const date_tine& t, const years& y)
date_time operator-=(date_tinme& t, const years& y)

Basic Time Period

t enpl at e<cl ass point_rep, class duration_rep>
cl ass basic_time_period

{

public:
t ypedef point_rep point_type
typedef duration_rep duration_type

//constructors
basic_time_period(point_rep first_point, point_rep end_point);
basic_time_period(point_rep first_point, duration_rep |len);

poi nt _rep begin() const;
point_rep end() const;
point_rep last() const;
duration_rep length() const;
bool is_null() const;

// conpari son operators

bool operator< (const period&) const;
bool operator<= (const period&) const;
bool operator> (const period&) const;
bool operator>= (const period&) const;
bool operator== (const period&) const;
bool operator!= (const period&) const;

//specialized accessors

bool contai ns (const point_rep& point) const;
bool contai ns (const period& ot her) const;
bool intersects (const period& other) const;
bool is_adjacent (const period& other) const;
bool is_before (const point_rep& polnt) const;
bool is_after (const point_rep& point) const;

42

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

period intersection (const period& other) const;
peri od nerge (const period& other) const;
period span (const period& other) const;

voi d shift(const duration_rep& d);

Time Zone Base

tenpl at e<typenane tine_type, typename CharT = char>
class tinme_zone_base {
public:

typedef std::basic_string<CharT> string_type;

typedef std::basic_stringstreankChar T> stringstreamtype;

typedef typenane tine_type::date_type::year_type year_type;

t ypedef typenane tine_type::tine_duration_type time_duration_type;

ti me_zone_base() {};
virtual ~time_zone base() {};

/1 Time zone nanes infornmation

virtual string_type dst_zone_abbrev() const=0;
virtual string_type std_zone_abbrev() const=0;
virtual string_type dst_zone_nane() const =0;
virtual string_type std_zone_nane() const =0;

[/ O fsets fromUTC

virtual time_duration_type base_utc_offset() const =0;
virtual time_duration_type dst_offset() const =0;
/I Dayl i ght savings details

virtual bool has_dst () const =0;
virtual tinme_type dst _local _start_tine(year_type y) const=0;
virtual tinme_type dst _local _end tine (year_type y) const=0;

//Printing function
virtual string_type to_posi x_string() const =0;

Concrete Temporal Types

Date Programming

t ypedef basic_date<...> dat e;

t ypedef basic_duration<...> days;

t ypedef basic_duration<...> weeks;

t ypedef basic_duration<...> nont hs;

t ypedef basic_duration<...> years;

t ypedef basic_tine_period<date, days> dat e_peri od;
Time Programming

typedef basic_date_tinme<...> date_tine;

t ypedef basic_time_duration<...> hours;

t ypedef basic_time_duration<...> m nut es;

43

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

typedef basic_tine_duration<...> seconds
typedef basic_tine_duration<...> m | |iseconds;
typedef basic_tine_duration<...> m croseconds;
typedef basic_tine_duration<...> nanoseconds

Additional Types

Time Zone

tenpl at e<cl ass CharT = char>
class tine_zone_nanes_base

{
public:
t ypedef std::basic_string<CharT> string_type
ti me_zone_nanes_base(const string_type& std_zone_nane,
const string_type& std_zone_abbrev,
const string_type& dst_zone_nane,
const string_type& dst_zone_abbrev)
{}
string_type dst_zone_abbrev() const
string_type std_zone_abbrev() const
string_type dst_zone_nane() const
string_type std_zone_nane() const

/1 Ti mezone type used for user custom zation
class tinme_zone : public tine_zone_base<date_tinme> {
public:
typedef typenane tine_type::year_type year_type
t ypedef boost::posix_tine::tinme_duration tinme_duration_type
typedef tine_zone_base base_type
t ypedef base_type::string_type string_type
typedef base_type::stringstreamtype stringstreamtype

ti me_zone(const tine_zone_names& zone_nanes,
const time_duration_type& base_utc_offset,
const dst _adj ust nent _of f set s& dst _of f set,
0 boost : : shared_ptr<dst _calc_rule> calc ruIe)
virtual ~tine_zone() {};
virtual std::string dst_zone_abbrev() const
virtual std::string std_zone_abbrev() const
virtual std::string dst_zone_nane() const
virtual std::string std_zone_nanme() const
virtual bool has_dst() const
virtual date_tine dst_local _start_tine(year_type y) const
virtual date time dst_local _end time(year type y) const
virtual time_duration_type base utc_offset() const
virtual time_duration_type dst _offset() const
virtual string type to_posix_string() const

Posix Time Zone

t enpl at e<typenane time_type, typename char T=char>
class posix_tinme_zone : public time_zone<tine_type, charT> {
public:

t ypedef typenane tine_type::year_type year_type

posi x_time_zone(const std::string& s);
virtual ~posix_time_zone();

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

//various zone nane strings

virtual std::string std_zone_abbrev() const
virtual std::string dst_zone_abbrev() const;
virtual std::string std_zone_nane() const;
virtual std::string dst_zone_nane() const;

virtual bool has_dst() const;

//calculate start / end of dst

virtual time_type dst_local _start_tine(year_type y) const;
virtual time_type dst_|ocal _end_tinme(year_type y) const;

virtual
vi rtual

time_duration_type base utc_offset() const;
time_duration_type dst_offset() const;

/1" Returns a PCSIX tine_zone string for this object
virtual string_type to_posix_string() const

In addition, input and output operators are provided:

tenpl ate <class CharT, class TraitsT>
std:: basic_ostreankCharT, TraitsT>&
operator<<(std::basic_ostream<CharT, TraitsT>& 0s, posix_tine_zone&)

tenpl ate <class CharT, class Traits>
std::basic_istreanxCharT, Traits>&))))
operator>>(std::basic_istreanm<CharT, Traits>& is, posix_tine_zone&)

Clock Types

t enpl at e<cl ass date_type>
cl ass day_cl ock

{
public:
/lreturns a time adjusted to the specified tine zone
t enpl at e<cl ass ti me_zone_t ype>
static date_type local _time(const time_zone_type& zone_spec);

static date_type local _time();
static date_type universal _tine();

}s

tenpl at e<cl ass time_type>
cl ass microsecond_cl ock

{
public:
/lreturns a tine adjusted to the specified tinme zone
tenpl at e<cl ass ti me_zone_t ype>
static time_type local _time(const time_zone_type& zone_spec);
stati
st at

b

c tine_type local _tine();
ic tinme_type universal _tinme();

tenpl ate<cl ass tine_type>
cl ass second_cl ock

{

public:
/lreturns a tine adjusted to the specified tinme zone
tenpl at e<cl ass ti nme_zone_type>
static time_type local _time(const tinme_zone_type& zone_spec);

45

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

static tine_type local _tinme();
}_stati time_type universal _tine();
Input-Output Facets

Date Output Facet

/* Cass that provides format based 1/ 0O facet for date types.

*

* This class allows the formatting of dates by using format string.
* Format strings are:

*

* - %A => | ong_weekday_format - Full name Ex: Tuesday

* - % => short_weekday_format - Three letter abbreviation Ex: Tue
* - OB => long_nonth_format - Full nane Ex: Cctober

* - O => short_nonth_format - Three letter abbreviation Ex: Cct
* - O => standard_format_specifier - defined by the locale

* - %-%-% => default_date_format - YYYY-Mn-dd

*

* Default nmonth format == %

* Default weekday format == %

*

*

*/

tenpl ate <cl ass date_type,
class CharT,
class QutltrT = std::ostreanbuf iterator<CharT, std::char_traits<CharT> > >
class date_facet : public std::locale::facet {
public:
typedef typenane date_type::duration_type duration_type;
typedef typenane date_type::day_of _week_type day_of _week_type;
typedef typenane date_type::day_type day_type;
typedef typenane date_type::nonth_type nonth_type;
typedef boost::date_tine::period<date_type, duration_type> period_type;
typedef std::basic_string<CharT> string_type;
typedef CharT char _type;
typedef boost::date_tine::period formatter<CharT> period formatter_type;
t ypedef boost::date_tine::special_values_formatter<CharT> special _values_formatter_type;
typedef std::vector<std::basic_string<CharT> > input_collection_type;

explicit time_facet(::size_t a_ref = 0);

explicit tinme_facet(const char_type* fornat,
const input_collection_type& short_nonth_nanes,
i:size_t ref_count = 0);

explicit time_facet(const char_type* fornmat,
period _formatter_type period_formatter = period _formatter_type(),
speci al _values_formatter_type special _values_fornmatter = special _val ues_forn
i:size_t ref_count = 0);

voi d fornat (const char_type* const fornat);

virtual void set_iso_format();

virtual void set_iso_extended_format();

voi d nont h_f ormat (const char_type* const fornat);
voi d weekday_f ormat (const char_type* const format);

void period_formatter(period_formatter_type period_formatter);

voi d speci al _values_formatter(const special _values_formatter_type& svf);
voi d short_weekday_nanes(const input_collection_type& short_weekday_namnes);
voi d | ong_weekday_nanes(const input_coll ection_type& | ong_weekday_nanes);
voi d short_nont h_names(const input_col |l ection_type& short_nont h_namnes);

voi d | ong_nont h_nanes(const input_collection_type& | ong_nont h_nanes);
QutltrT put(QutltrT next, std::ios_base& a_ios,

char_type fill_char, const date_type& d) const ;
QutltrT put(QutltrT next, std::ios_base& a_ios,
char_type fill _char, const duration_type& dd) const ;

QutltrT put(QutltrT next, std::ios_base& a_ios,

46

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

char_type fill _char,

/1 puts the day of nonth

QutltrT put(QutltrT next, std::
char_type fill _char,
QutltrT put(QutltrT next, std::

const nonth_type& m) const;

i 0s_base& a_i os,
const day_type& day) const;
i 0s_base& a_l os,

char _type fill _char, const day_of week_type& dow) const;
QutltrT put(QutltrT next,

Date Input Facet

/1 Input facet that

// date durations,

/!l for custom zation of all
/1 including days of week,
te

mpl ate <cl ass date_type,

cl ass date_i nput_facet

public:
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

class CharT,

std::
char_type fill_char,

i 0s_base& a_i os,
const period_type& p) const

uses format strings to parse dates,
and date periods. Like the output facet allows

strings associated with date type

nmont h names, and special val ues.

class InltrT = std::istreanbuf _iterator<CharT, std::char _traits<CharT> > >

typenane date_type::
typenane date_type::
typenane date_type::
typenane date_type::
t ypenane date_type:

public std::locale::facet {

duration_type duration_type;
day_of _week_type day_of _week_type;
day_type day_type;

nont h_type nont h_type;

:year _type year_type;

basi c_ti me_peri od<date_type, durati on_type> period_type;
std:: basic_string<CharT> string_type;

CharT

char _type;

boost::date_time:: period_parser<date_type, CharT> period_parser_type;
speci al _val ues_par ser <dat e_t ype, Char T> speci al _val ues_par ser _type;
std::vector<std::basic_string<CharT> > input_collection_type;

format _dat e_parser<date_type, CharT> fornat_date_parser_type;

explicit date_input_facet(::size_t a_ref = 0);

explicit date_input_facet(const string_type& fornmat,
c:size_t a_ref = 0);

explicit date_input_facet(const

voi d fornmat (const

virtual
vi rtual

voi d nmont h_f or mat (const

void set_iso_form

const
const
const
const

string_type& fornat,

format _dat e_parser_type& date_parser,
speci al _val ues_par ser _type& sv_parser,
peri od_parser_type& per_parser,

dat e_gen_par ser _type& dat e_gen_parser,

i:size_t ref_count = 0);

t();

char _type* const format);

voi d set _iso_extended_format();

char _type* const format);

voi d weekday_format (const char_type* const format);
voi d year_format (const char_type* const format);

//set the various strings associated with dates
voi d short_weekday_nanes(const

voi d | ong_weekday_nanes(const
voi d short_nont h_names(const
voi d | ong_nont h_nanes(const

i nput _col | ection_type& weekday_namnes);
i nput _col | ection_type& weekday_nanes);
i nput _col | ection_type& nmont h_nanes);
i nput _col | ection_type& nont h_nanes);

/lallow user specialization of period and special value handling
voi d period_parser(period_parser_type period_parser);
voi d speci al _val ues_parser (speci al _val ues_parser_type sv_parser);

InltrT get(InltrT& from

InltrT& to,

std::ios_base& /*a_ios*/,

date_type& d) c¢

onst ;

47

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

InltrT get(InltrT& from

InltrT& to,

std::ios_base& /*a_ios*/,

nont h_type& nm) const;
InltrT get(InltrT& from

InltrT& to,

std::ios_base& /*a_ios*/,

day_of week_type& wd) const;
InltrT get(InltrT& from

InltrT& to,

std::ios_base& /*a_ios*/,

day_type& d) const;
InltrT get(InltrT& from

InltrT& to,

std::ios_base& /*a_ios*/,

year _type& y) const;
InltrT get(InltrT& from

InltrT& to,

std::ios_base& a_ios,

duration_type& dd) const;
InltrT get(InltrT& from

InltrT& to,

std::ios_base& a_ios,

period_type& p) const;

Time Output Facet

* Facet used for format-based output of date_tine types
* This class provides for the use of format strings to output tinmes. |In addition
* to the flags for formatting date elenents, the following are the allowed format fl ags:
* - O %X => default format - enables addition of nore flags to default (ie. "% %X %")
* - o => fractional seconds ".123456"
* - 9 => fractional seconds or none: like frac sec but enpty if frac sec ==
* - 9 => seconds w fractional sec "02.123" (this is the same as "%8%)
* - o8 => seconds "02"
* - 9z => abbreviated tinme zone "EDT"
* - o => full time zone nanme "Eastern Daylight Tine"
*
/

tenpl ate <class tinme_type,
class CharT,
class QutltrT = std::ostreanbuf iterator<CharT, std::char_traits<CharT> > >
class tinme_facet :
pg:)! ic date_facet<typenane tinme_type::date_type , CharT, QutltrT> {
public:
typedef typenane tine_type::date_type date_type;
typedef typenane tine_type::tinme_duration_type tine_duration_type;
t ypedef basic_tine_period<tinme_type,time_duration_type> period_type;
typedef date_facet<typenane tine_type::date_type, CharT, QutltrT> base_type;
t ypedef typenanme base_type::string_type string_type;
t ypedef typenane base_type::char_type char _type;
t ypedef typenanme base_type::period formatter_type period_formatter_type;
t ypedef typenane base_type::special _values formatter_type special _values_formatter_type;

explicit time_facet(::size_t a_ref = 0);
explicit time_facet(const char_type* a_format,
period_formatter_type period_formatter = period formatter_type(),

const special _values_formatter_type& special _value_formatter = special _val ue

i:size_t a_ref = 0);

/1 Changes format for tinme_duration

void tinme_duration_format(const char_type* const fornat);
virtual void set_iso format();

virtual void set_iso_extended_format();

//wite out a date_tine tine point
QutltrT put(QutltrT a_next,
std::ios_base& a_ios,
char _type a_fill,
const tinme_type& a_tinme) const;

48

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

//wite out a duration
Qut I rT put(QutltrT a_next,
std::ios_base& a_ios,
char_type a_fill,
const time_duration_type& a_time_dur) const;

//wirte out a date_tinme perlod
Qut I rT put(QutltrT next, std::ios_base& a_ios,
char _type fi N , const peri od_type& p) const;

Time Input Facet

/|l Facet for format-based input of date_tinme types
/ldefault date_time format is YYYY-Mon-DD HH: MM SS[.fff...][zzz]
//default time_duration format is % 9% ¥%8% HH. MM SS[. fff...]
tenpl ate <class tinme_type,
class CharT,
class InltrT = std::istreanbuf _iterator<CharT, std::char_traits<CharT> > >
class time_input_facet
pugl i c date_i nput_facet<typenane time_type::date_type , CharT, InltrT> {
public:
typedef typenane tine_type::date_type date_type;
typedef typenane tine_type::tine_duration_type tinme_duration_type;
typedef typenane tine durati on _type::fractional seconds _type fracional _seconds_type;
t ypedef basic_tine_period<tine_type, time_duration _type> period_type;
t ypedef date_ input _facet<typenane tine_type::date type, CharT, InltrT> base_type;
t ypedef typenane base_type::duration_type dat e_duration_type;
t ypedef typenane base_type: :year_type year _type;
t ypedef typenane base_type::nonth_type nonth_type;
typedef typenane base_type::day_type day_type;
typedef typenane base_type::string_type string_type,
t ypedef typenane string_type const _iterator const_itr;
t ypedef typenane base_type::char _type char _type;
typedef typenane base_type::format_date_parser_type format_date_parser_type;
typedef typenane base_type::period_parser_type period_parser_type;
typedef typenane base_type::special val ues_parser_type special val ues_parser_type;
t ypedef typenane base_type::date_gen_parser_type date_gen_parser_type;
t ypedef typenane base_type::special _val ues_parser_type::match_results match_results;

explicit time_input_facet(const string_type& format, ::size_t a_ref = 0);

explicit time_input_facet(const string_type& fornat,
const fornmat_date_parser_type& date_parser,
const speci al _val ues_parser_type& sv_parser,
const period_parser_type& per_parser,
const date_gen_parser_type& date_gen_parser,
i:size_t a_ref = 0);

InltrT get(InltrT& sitr,
InltrT& stream end,
std::ios_base& a_ios,
time_duration_type& td) const;

InltrT get(InltrT& sitr,
InltrT& stream end,
std::ios_base& a_ios,
time_type& t) const;

InltrT get_local _time(InltrT& sitr,
InItrT& stream end,
std::ios_base& a_ios,
time_type& t,
string _type& tz_str) const;

InltrT get(InltrT& sitr,
InltrT& stream end,

49

N1900=05-0160 Proposal to Add Date-Time to the
C++ Standard Library 0.75

std::ios_base& a_ios,
time_type& t,

string_type& tz_str,

bool tine_is_local) const;

Open Issues

Timezones and char type
What should be done with char types and timezones? Should there be awposix_time _zone? If so then how do we deal

with thisimpact on the local_date time? This needs to be templatized by char type. But al the timezone designations
currently use narrow strings. Is this complication worth it?

Acknowledgments

First thanks goes to the Boost Community for all the constructive suggestions for evolving Boost Date-Time Library
[http://Iwww.boost.org/libs/date_time/index.html] into a great C++ date-time library. Special thanks goes to my family
for allowing me to work on this.

References

» Fowler, Martin "Patterns for things that change with time" [http://martinfowler.com/ap2/timeNarrative.html] .
» Boost Date-Time Library [http://www.boost.org/libs/date_time/index.html]

* Network Time Protocol [http://www.ntp.org]

* RFC 822 Date-Time Specification [http://www.w3.org/Protocol s/rfc822#z28]

» |ETF Timezone Draft [http://mirrors.isc.org/pub/www.watersprings.org/pub/id/draft-ietf-dhc-timezone-03.txt]
» 1S0 8601 standard [http://www.iso.org/iso/en/Catal ogueDetail Page.Catal ogueDetail 7CSNUM BER=26780]

* Another IETF DHCP Extension Draft
[http:/Avww join.uni-muenster.de/Dokumente/drafts/draft-ietf-dhc-v6exts-08.txt]

e |ETF Timezone Draft [http://mirrors.isc.org/pub/www.watersprings.org/pub/id/draft-ietf-dhc-timezone-03.txt]
» Henney, Kevlin Object of Vaue (pdf) [http://www.two-sdg.demon.co.uk/curbral an/papers/ObjectsOf Value.pdf].
e Langer on C++ internationalization [http://www.langer.camel ot.de/Articles/Cuj/Internationalization/I 18N.html]

» Leap Second Discussion at US Navy Website. [http://tycho.usno.navy.mil/leapsec.html].

50

http://www.boost.org/libs/date_time/index.html
http://martinfowler.com/ap2/timeNarrative.html
http://www.boost.org/libs/date_time/index.html
http://www.ntp.org
http://www.w3.org/Protocols/rfc822#z28
http://mirrors.isc.org/pub/www.watersprings.org/pub/id/draft-ietf-dhc-timezone-03.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26780
http://www.join.uni-muenster.de/Dokumente/drafts/draft-ietf-dhc-v6exts-08.txt
http://mirrors.isc.org/pub/www.watersprings.org/pub/id/draft-ietf-dhc-timezone-03.txt
http://www.langer.camelot.de/Articles/Cuj/Internationalization/I18N.html
http://tycho.usno.navy.mil/leapsec.html

