
Document number: N1840=05-0100
Document title: C++0x Proposal: Function templatestd::minmax

and / or algorithmstd::minmax_element
Author: Hervé Brönnimann
Contact: hbr@poly.edu
Organization: Polytechnic University
Date: 2005-06-28
Working Group: Library

Abstract

This proposal adds a function template (std::minmax) and / or an algo-
rithm (std::minmax_element) to the header<algorithm>, both of which
are implicitly present (by two separate calls tostd::min andstd::max,
or std::min_element andstd::max_element), but admit a better imple-
mentation if the two calls are combined into one. Both additions can be
considered independently, although they are strongly related hence the com-
mon proposal. Both are very low-risk and two reference implementations are
given forstd::minmax_element.

Contents

Contents 1

I Motivation and Scope 2

II Impact On the Standard 3

III Design Decisions 4

IV Proposed Text for the Standard for std::minmax 5

V Proposed Text for the Standard forstd::minmax_element 6

VI Reference implementation ofminmax_element 7

VIIAcknowledgements 9

References 10

1

I Motivation and Scope

This proposal adds a function template (std::minmax) and / or an algorithm
(std::minmax_element) to the header<algorithm>. Both can be easily imple-
mented by two separate calls tostd::min andstd::max, orstd::min_element
andstd::max_element, but admit a better implementation if the two calls are
combined into one.

The two additions are closely related but independent. It is possible to accept
minmax_element but rejectminmax. Of the two, however,minmax_element is
perceived to be the more important and useful (and I hope the less controversial of
the two).

1 The functionminmax solves the following problem: simultaneous min and max
computation requires only one comparison, but usingstd::min andstd::max
forces two comparisons.

2 The purpose ofstd::min_element andstd::max_element is to determine the
extentof a range, and it is often the case that both need to be known. The need for
knowing the extent of a range is so basic that it hardly needs justification, but here
are a few:
1. in order to build a histogram over a range, the extent of the range (both min and
max) must be known.
2. in computer graphics, one needs to compute enclosing boxes of a scene, by
taking both min and max of the vertex coordinates.

(Note: In the latter example, however, several passes must still be made, one
for each coordinate, although the gain per coordinate is the same as in a one-
dimensional range. It would be even more efficient to have a single pass algorithm
working on all the coordinates at once, e.g. by using a minmax accumulator, but
this is beyond the scope of this proposal.)

In the case ofstd::minmax_element, there are two competing implementations.
Either of them performs onlyn operator++ on the range iterator vs. 2n each for
the two separate calls tostd::min_element andstd::max_element. One is
a simple loop combining bothmin_element andmax_element and performs 2n
comparisons. The other is an algorithm that performs 3n/2+ O(1) comparisons.
This is a standard exercise in algorithms textbooks [1, Sec 9.1, p. 185], and an
adversary argument also provides a lower bound ofb3n/2c comparisons in any
case [1, Ex. 9.1-2, p. 185].

This algorithm was incorporated intowww.boost.org as the Boost minmax li-

2

www.boost.org

brary. As documented in the Boost minmax libary webpage, the runtime ofstd::minmax_-
element is only slightly higher thanstd::min_element alone, and thus results
in a gain of a factor of two compared to the two separate calls (this is especially
true for expensive iterators such asset).

Some care must be exercised to return the first occurences of min and max elements
if several equivalent values occur in the input range. For instance, if all the elements
were identical, the algorithm as described in [1] would never returnstd::make_-
pair(first,first). See the reference implementations given below.

3 As an example of usage, with the appropriate#includes:

int main()
{

using namespace std;
/ / note that this would read better with declaration as: auto result1 = ...;
pair < reference_wrapper <int const >, reference_wrapper <int const >

result1 = minmax(1, 0);
assert(result1.first == 0);
assert(result1.second == 1);

list <int > L;
typedef list <int >:: const_iterator iterator;
generate_n(front_inserter(L), 1000, rand);
pair < iterator , iterator >

result2 = minmax_element(L.begin(), L.end ());
cout << "The smallest element is " << *(result2.first) << endl;
cout << "The largest element is " << *(result2.second) << endl;

assert(result2.first == std:: min_element(L.begin(), L.end ());
assert(result2.second == std:: max_element(L.begin(), L.end ());

}

II Impact On the Standard

This proposal defines two connected but independent pure library extensions.

The impact withminmax_element is limited strictly to the addition of the two
function templates. It does not interact with other parts of the standard that I can
think of.

Although the presence ofminmax would be preferable for symmetry, it also ties
to the acceptance of the reference wrapper (N1453) which is already accepted into
the Library TR. The proposal forminmax for C++0x is conditional on the presence
of reference wrappers in C++0x.

3

III Design Decisions

1 For minmax(a,b), if the two valuesa andb are stored consecutively in a range,
one can usesort, but it is wasteful and does not work for values stored in non-
consecutive positions or in two unrelated variables.

2 Like min and max, minmax returns a pair of references toT const. This pre-
vents idioms such astie(a,b)=minmax(a,b); to order two elementsa andb,
although this would have the desired effect if we returned a reference instead of a
constant reference. The reason is that two unnecessary assignments are performed
if a andb are in order. It is better to stick toif (b<a) swap(a,b); to achieve
that effect. The proper treatment however involves the presence of the reference
wrappers because one cannot instantiatepair<T const&, T const&>.

3 The decision to allow up to 2n−2 comparisons forminmax_element is to allow
the trivial implementation as well as the more sophisticated one detailed below. In
fact, experiments show that the trivial loop performs just as well (in fact, slightly
better for vector and set iterators and slightly worse for list iterators), despite mak-
ing more comparisons. My decision is to leave it up to the implementor of the
library.

4 The decision to use a pair ofreference_wrapper<T const> instead oftu-
ple<T const&, T const&> as is done in Boost is motivated by the fact that
<algorithm> already includes<utility> and hence the wrappers, while it seems
ridiculous to introduce a dependence on<tuple> just for minmax (should<tu-
ple> be accepted into the standard).

5 The Boost minmax library also provides variants such aslast_min_element,
first_min_last_max_element, etc. In this terminology, the standardstd::min_-
element corresponds tofirst_min_element, and the proposedstd::minmax_-
element corresponds tofirst_min_first_max_element. These variants are
somewhat academic and outside the scope of this proposal.

4

IV Proposed Text for the Standard for std::minmax

In theheader <algorithm> synopsis, add:

/ / 25.3.7, minimum and maximum:
/ / [... min, max, followed by]

template <class T>
pair < reference_wrapper <T const >,

reference_wrapper <T const > >
minmax(const T& a, const T& b);

template <class T, class Compare >
pair < reference_wrapper <T const >,

reference_wrapper <T const > >
minmax(const T& a, const T& b, Compare comp);

/ / [... min_element, and max_element]

In section 25.3.7, add:
template <class T>

pair < reference_wrapper <T const >,
reference_wrapper <T const > >

minmax(const T& a, const T& b);

template <class T, class Compare >
pair < reference_wrapper <T const >,

reference_wrapper <T const > >
minmax(const T& a, const T& b, Compare comp);

7 Requires: Type T isLessThanComparable (20.1.2) andCopyConstructible
(20.1.3).

8 Returns: std::make_pair(cref(b),cref(a)) if b is smaller thana, and
std::make_pair(cref(a),cref(b)) otherwise.

9 Note: Returns(a,b) if a andb are equivalent.
10 Complexity: Exactly one comparison.

5

V Proposed Text for the Standard forstd::minmax_ele-
ment

In theheader <algorithm> synopsis, add (and by the way, the comment heading
25.3.8 is missing in the synopsis even in the 2003 revision):

/ / 25.3.7, minimum and maximum:
/ / [... min_element, and max_element, followed by:]
template <class ForwardIterator >

pair <ForwardIterator , ForwardIterator >
minmax_element (ForwardIterator first , ForwardIterator last);

template <class ForwardIterator , class Compare >
pair <ForwardIterator , ForwardIterator >

minmax_element (ForwardIterator first , ForwardIterator last ,
Compare comp);

/ / 25.3.8, lexicographical comparisons:
/ / [... lexicographical_compare, etc.]

At the end of section 25.3.7, add:
template <class ForwardIterator >

pair <ForwardIterator , ForwardIterator >
minmax_element(ForwardIterator first , ForwardIterator last);

template <class ForwardIterator , class Compare >
pair <ForwardIterator , ForwardIterator >

minmax_element(ForwardIterator first , ForwardIterator last ,
Compare comp);

11 Returns: std::make_pair(m,M) wherem is thestd::min_element andM the
std::max_element of the input range[first, last) for the corresponding
comparisons.

12 Complexity: At most max(2*(last-first)-2, 0) applications of the corre-
sponding comparisons.

6

VI Reference implementation ofminmax_element

The naive implementation of the predicate version ofminmax_element is simply

template <class ForwardIter , class Compare >
pair <ForwardIter ,ForwardIter >
minmax_element(ForwardIter first , ForwardIter last ,

Compare comp)
{

ForwardIter min_result = first , max_result = first;
if (first != last) {

while (++ first != last) {
if (comp(*first , *min_result)) min_result = first;
if (comp(*max_result , *first)) max_result = first;

}
}
return make_pair(min_result , max_result);

}

For reference, we present the full code of a reference implementation (see the Boost
minmax library) of the binary predicate version of the algorithm that performs an
optimal number of comparisons. It is a lot more complex and in practice per-
forms about the same (sometimes slightly more, sometimes slightly less) despite
the lower number of comparisons. On the other hand, it is not much worse either
and guarantees an optimal number of comparisons.

template <class ForwardIter , class Compare >
pair <ForwardIter ,ForwardIter >
minmax_element(ForwardIter first , ForwardIter last , Compare comp)
{

/ / 1. if no elements
if (first == last)

return make_pair(last ,last);

/ / 2. declare return values
ForwardIter min_result = first;
ForwardIter max_result = first;

/ / 3. if only one element
ForwardIter second = first; ++ second;
if (second == last)

return make_pair(min_result , max_result);

/ / 4. treat first pair separately (only one comparison for first two elements)
ForwardIter potential_min_result = last;
if (comp(*first , *second))

max_result = second;
else {

min_result = second;
potential_min_result = first;

}

7

/ / 5. then each element by pairs, with at most 3 comparisons per pair
first = ++ second; if (first != last) ++ second;
while (second != last) {

if (comp(*first , *second)) {
if (comp(*first , *min_result)) {

min_result = first;
potential_min_result = last;

}
if (comp(*max_result , *second))

max_result = second;
} else {

if (comp(*second , *min_result)) {
min_result = second;
potential_min_result = first;

}
if (comp(*max_result , *first))

max_result = first;
}
first = ++ second; if (first != last) ++ second;

}

/ / 6. if odd number of elements, treat last element
if (first != last) { / / odd number of elements

if (comp(*first , *min_result)) {
min_result = first;
potential_min_result = last;

} else if (comp(* max_result , *first))
max_result = first;

}

/ / 7. resolve min_result being incorrect with one extra comparison
/ / (in which case potential_min_result is necessarily the correct result)
if (potential_min_result != last

&& !comp(*min_result , *potential_min_result))
min_result = potential_min_result;

return make_pair(min_result ,max_result);
}

Note the following points:

• Exit is performed as early as possible in sections 1 or 3 with no comparisons,
which is the same as the naive implementation.

• In case of two elements, we perform only two comparisons (one in section 4 and
another in section 7), which is the same as the naive implementation.

• For more than 2 elements, the first pair only induces one comparison, but every
subsequent pair induces 3 comparisons, the last element induces two com-
parisons if it is at an even position (section 6), and there is perhaps one more
comparison at the end (section 7), thus the number of comparisons is at least

8

3bn/2c−2 if n is even and 3bn/2c if n is odd, and at most 3bn/2c−1 if n is
even and 3bn/2c+1 if n is odd.

• The bulk of the algorithm is in section 5, where 3 comparisons per consecutive
pair of iterators are performed. We are careful to only perform the minimum
required number ofoperator++.

• The only subtle point of the implementation is that the loop as given in section
5 does not quite keep the first occurence of the minimum element, in the
case when*first and*second are equivalent and trigger an update of the
minimum, because in this case theelse clause is evaluated, we compare
*min_result to *second and it issecond that updatesmin_result. So
we must make a comparison at the end to resolve this case (section 7).

This extra comparison results from the desire to return thefirst occurence of both
minimum and maximum elements, which is not possible if elements are treated
in pair and either the result can only bestd::make_pair(first,second) or
std::make_pair(second,first).

VII Acknowledgements

My students in CS903 (Polytechnic Univ., http://photon.poly.edu/ hbr/cs903/) who
had minmax_element as an assignment helped clarify the issues, and also came up
with the optimum number of comparisons for first_min_last_max_element.

One minmax_element implementation, which performs 3(n/2)+O(log n) compar-
isons on the average when the elements are random_shuffled, was suggested by
my student Marc Glisse. The current one, which performs 3(n/2)+1 comparisons
in the worst case, was suggested by John Iacono.

Finally, Matthew Wilson and Jeremy Siek contributed pre-review comments, while
Gennadiy Rozental, John Maddock, Craig Henderson, Gary Powell participated in
the review of the Boost library, managed by Thomas Witt. Late after the review,
as I finally scrounged to add the library for a release, Eric Niebler noted the bad
behavior of pair for minmax and suggested to use Boost.tuple instead. Here I use
reference wrappers instead. All my thanks for the excellent advice and reviews
from all.

9

References

[1] T. Cormen, C. Leiserson, R. Rivest and C. Stein.Introduction to algorithms
(2nd edition). The MIT Press, 2004.

10

	Contents
	Motivation and Scope
	Impact On the Standard
	Design Decisions
	Proposed Text for the Standard for std::minmax
	Proposed Text for the Standard for std::minmax_element
	Reference implementation of minmax_element
	Acknowledgements
	References

