I1S0/JTC1/SC22/WG14/N531 Page 1

Document Number: WG1l4 N531/X3J11 95-132

C9X Revision Proposal

Title: Assorted Preprocessor Extensions
Author: Frank Farance
Author Affiliation: Farance Inc.
Postal Address: 555 Main Street, New York, NY, 10044-0150, USA
E-mail Address: frank@farance.com
Telephone Number: +1 212 486 4700
Fax Number: +1 212 759 1605
Sponsor: X3J11
Date: 1995-12-22
Proposal Category:
___ Editorial change/non-normative contribution
~ o Horrection
X _New feature
Addition to obsolescent feature list
Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
___ Environment
___ Language
X Preprocessor

Library
___ Macro/typedef/tag name
oo R T e
- Header
Prior Art:
Target Audience: C programmers
Related Documents (if any):
Proposal Attached: _ Yes X No, but what’s your interest?
Abstract: b

The following are various additions to the preprocessor.
The improvements come from existing macro languages and the
POSIX shell language. The purpose of these features is to
be able to write more sophisticated preprocessor macros.
Why? Compile-time (typed, but static) and run-time (typed
and untyped, and dynamic) programming each have their
advantages and disadvantages. The advantage of pre-
processor programming is that it is untyped and static.
Without these features, the programmer produces a less-
than-optimal solution when using compile-time solutions
(e.g., the operands must be typed -- this translates into
larger code (multiple functions for different types), or
limited function (everything is promoted to some type)) or
run-time solutions (e.g., the typing is done at run-time,
e.g., run-time typed identifiers and typing system).

This solution makes moderate extensions to the preprocessor

in several areas: expanding a macro, evaluating a macro,
preprocessor blocks, and preprocessor looping.

Ly3

IS0/JTC1/SC22/WG14 /N531 Page 2

Since the preprocessor is complicated with many special
cases, the first step should be deciding what kind of
features we want. The second step is determining the
precise semantics and standards wording.

EXPANDING A MACRO

This feature allows the programmer to completely expand a
macro.

#define a (b+c) +(d+e)
#define b (x+y)
#define z #expand(a)

This will define "z" as " ((x+y) +c)+(d+e)".
GETTING A VALUE

This feature allows the programmer to evaluate an expression
and produce its numeric value. For example:

#define z 20
#define y (z+10)
#define x #value (y)

This statement calculates value of the expression "y", just
as if it were used in a "#if" statement. This is useful for
constant folding. In the above example, "x" is defined as
"30", not "(z+10)". The "#value" directive is useful for
creating temporary names:

#define n O
P e

#define n #value (n+1)
int temp_ ## #value(n) ;

Additionally, the preprocessor should support string
comparison:

#if IEEE DOUBLE == "double"

This would be handled in the same way AWK determines whether
to do a string or numeric comparison.

BLOCKS

Preprocessor blocks of code as single ‘‘lines’’, just like a
block of C statements can act as a single statement:

ﬁ?efine flabe.a) &
#if defined (VAX)
vax_special code(a,b,c);

ISO/JTC1/SC22/WG14/N531 Page 3

#else
regular code(a,b,c);
#endif
#)
This is especially handy when embedding other preprocessor
features (e.g., "#if") inside a definition.
LOOPING

This feature allows the programmer to write loops to
generate code (e.g., initializing an array). For example:

#define ARRAY SIZE 10
int array[ARRAY SIZE] =

#for (1 = 0 ; i < ARRAY SIZE ; i = #value(i+l)) \
#{ i

#}
}

7

B AN N f e

The following looping constructs are provided:
#for (start ; test ; increment) body
#while (test) body

#do body
#while (test)

With looping control structures, "#break" and "#continue"
are useful and intuitive:

#break

#continue

#break N /* breaks N block levels */

#continue N /* continues loop at N block levels */
SUPPORT FOR VARIABLE LENGTH ARGUMENTS

The programmer uses syntax similar to C prototype syntax to
indicate that the macro takes a varying list of arguments:

#define error printf (format,...) /* 1 or more arguments */
#define x(...) /* 0 or more arguments */

Within the definition, "#1" refers to argument 1, "#2"
refers to argument 2, and so on. "#9" is argument 9 plus a
comma-separated list of the remaining arguments. For
example, in

error_printf(a,b,c,d,e,f,g,h,i,j,k,1)

a7l

ISO/JTC1/SC22/WG14/N531 Page 4

ni#ov ig "i,j,k,1". "#0" refers to the complete, comma-
separated argument list. The "#shift" directive shifts all
the argments left and drops argument 1. This allows for
processing arbitrarily long argument lists. "#?" contains
the number of arguments in the list.

ﬁ?efine SR LRI T
#define n 0
ﬁ?hile G- AT A
printf ("arg[%d]l: %d\n",n,#1);
} #shift
#

£Ys

