ISO/JTC1/SC22/WG14/N530 Page 1

From: Frank Farance

Organization: Farance Inc.

Telsphone: +1 212 486 4700

Fax: +1 212 759 1605

E-mail: frankefarance.com

Date: 1995-12-22

Document Number: WG14/N530 X3J11/95-131
Subject: Issues on C Binding for LIPC

In the previous WG14/N463 document, '‘Impact of adding
WG1l’s LIA-1, LID, and LIPC features’’, I had described
adding LIPC (Language Independent Procedure Calling) as
possible for C9X, assuming the LID (Language Independent
Datatypes) issues were resolved. Since them, WG1l4 has had
presentations from Craig Schaffert (of WG1ll) and Tom
MacDonald (concerning Fortran compatibility).

The main problem is that there are two different notions of
compatibility: (1) at the functional level -- arguments,
calls, and results are described abstractly and mapped
transparently into the target environments, (2) at the byte
level -- bit/byte ordering and alignment, stack ordering and
alignment, calling conventions, addressing conventsions,
pointers, pass by value, pass by reference, pass by copy-
in-out, pass on demand.

HEAVYWEIGHT PARADIGM

The first paradigm is a ‘'‘heavyweight’’ paradigm that
involves argument conversion, marshalling and unmarshalling
parameter information. This paradigm is used for RPCs
(remote procedure calls).

The heavyweight paradigm is unlikely to be solved in C9X.
One indicator of this is WGl4’'s lack of interest in solving
bit/byte ordering and alignment issues for data structures
-- necessary for communication among different architectures
in networking, database, and distributed computing
applications. If WG1l4 isn’t interested in interoperability
among C programs in different machine architectures, it
certainly won’t be interested in solving the problem with
different languages across different machine architectures.

LIGHTWEIGHT PARADIGM

The second paradigm is a ‘‘lightweight’’ paradigm that is
similar to the interoperability among programming languages
(e.g., C, C++, Fortran, Pascal) within a single machine
architecture. This paradigm involves either the caller or
callee emulating the other’s calling conventions (e.g.,
stack reordering and realignment) .

We should solve the problems of the lightweight paradigm
first: if we can’t address the problem in a single machine
architecture, then we certainly can’t solve it among several
machine architectures. There are several mechanisms



ISO/JTC1/SC22/WG14/N530 Page 2

available (e.g., the use of keywords, such as "fortran'", or
C++'s linkage technique of using "extern "C" func()").

Since WGll is solving an SC22 problem, we only need to solve
the ‘'‘handshake’’ problem for the number of languages within
SC22. We should recognize that all solutions to the problem
should involve the ‘‘lightweight’’ techniques described
above.

RECOMMENDATION

WG14 should develop specific compatibility ‘‘bridges’’
between C and the common programming languages it interacts
with (e.g., C++, Fortran, Pascal). There may be some
interest in other programming languages (e.g., Cobol and
LISP), but we should priorize the languages of interest.
Certainly, our solution to the smaller problem must_ be
contained within the abstraction of the larger problem
(i.e., the heavyweight paradigm of LIPC), so we aren’t
losing anything (or future LIPC compliance) by solving the
smaller problem first.



