ISO/JTC1/SC22/WG14 /N529 Page 1

From: Frank Farance

Organization: Farance Inc.

Telephone: +1 212 486 4700

Fax: +1 212 5944605

E-mail: frank@farance.com

Date: 1998=u2=-22

Document Number: WG1l4/N529 X3J11/95-130
Subject: Issues on C Binding for LID

In the previous WG14/N463 document, ‘‘Impact of adding
WGll'’s LIA-1, LID, and LIPC features’’, I had described
adding LID (Language Independent Datatypes) as infeasible
for C9X. Since then, WG14 had a presentation from Craig
Schaffert of WG1ll and I have had discussed these issues with
him.

Briefly, LID specifies several datatype and datatype
generation mechanisms. Each is described by its domain (a
set of acceptable values), its operational properties (e.g.,
integers are: ordered, each, numeric, unbounded), and its
characterizing operations (methods in object-oriented
terminology) .

The following datatypes are specified in LID:

Primitive datatypes: boolean, state, enumerated,
character, ordinal, date-and-time, integer,
rational, scaled, real, complex, void.

Subtypes: range, selecting, excluding, extended,
size, explicit subtypes.

Generated datatypes: choice, pointer, procedure.

Aggregate datatypes: record, set, bag, sequence,
array, table.

Defined datatypes.

The following are the remaining outstanding issues for
continuing work on a C binding for LID:

(1) There is much commonality with these datatypes
and the C++ class libraries being specified within
WG21. 1In some cases retaining compatibility with
C++ means using templates. Since C9X is unlikely to
include templates, what will our strategy be:
eliminate the functionality or build a different
interface?

(2) Even if we chose to take C++ class libraries
(1ncludlng templates), how do we resolve interfaces
that are incompatible or incomplete with LID?

(3) LID doesn’t address promotion issues among
different types (e.g., converting boolean to integer



ISO/JTC1/SC22/WG14/N529 Page 2

or vice versa). How do we determine appropriate, if
any, conversions-?

(4) LID doesn’t address promotion issues among
different implementations of the same type (e.g., a
date-time that specifies month, day, hour, minute,
second vs. a date-time that includes the year,
month, day). Do we leave this completely
implementation-defined?

(5) How does the programmer learn of the limitations
of each of the implementations of the datatypes.
This would serve a purpose similar to what LIA-1
does for arithmetic types: determining the
implementation characteristics of the operands and
the operators.

While it’s attractive to jump into the details of specifying
these new types, we should resolve these issues first so
that we can focus our efforts properly.



