ISO/JTC1/SC22/WG14 /N525 Page 1

From: Frank Farance, William Rugolsky Jr.
Organization: Farance Inc.

Telephone: +1 212 486 4700

Fax: +1 212 759 1605

E-mail: frankefarance.com, rugolsky@farance.com
Date: 1995-12-22

Document Number: WG14/N525 X3J11/95-126
Subject: Issues on overloading

The purpose of overloading is: (1) to create alternate
meanings for a symbol, based upon the context (2) to allow
the translator to determine the context.

We let the translator determine context because: it may be
error prone for the programmer to determine the context, or
it may be difficult for the programmer to determine. For
example, when writing an overloaded square root function,
"square_root (X)", if we had to change the function name
every time the type of X changed, the result would be
application programmers would make mistakes matching the
type of X to the function type.

Another solution might be to always promote (or demote) to a

known type (e.g., the C "sqrt()" function promotes its
argument to "double"). The problems here are loss of
information (by demotion to narrower types), unexpected

results (by promotion to wider types), or inefficiency
(wider type takes more space and/or time).

The following are the goals of implementing an overloading
mechanism:

- Determine what symbols can be overloaded
(operator, function).

- Determine what meanings are associated with the
symbol.

- Determine how the context points to a particular
meaning.

- Determine how the compiler generates internal
(linker) names for the different meanings.

OPERATORS VS. FUNCTIONS

There isn’t much difference between overloading operators
and functions. The primary difference is syntax.

MEANINGS AND CONTEXT

There are many ways to describe the alternative meanings.

In C++, the meanings are itemized individually. There is a
one-to-one correspondence between the context (the
prototype) and the meaning (its body). This simple
technique, however, is flawed when we have hundreds of
meanings for a symbol, e.g., arithmetic operations typically
have more than a hundred meanings (12 * 12 possibilities:
char, signed/unsigned char, signed/unsigned short,

R e

ISO/JTC1/SC22/WG14 /N525 Page 2

signed/unsigned int, signed/unsigned long, float, double,
long double). In fact, the translator varies on how this is
implemented for arithmetic operators for C types: some
implement all cases (itemize all meanings), some implement
only a subset (promotion tiers), and some implement a subset
plus certain special optimizations.

Given that translators do this differently, we should expect
that programmers would want to do this differently, too.

- Itemize all cases. This is how it is done in C++.

- Implement some cases. This could be done in C++,
but there are some cases recognizing a ‘'‘pattern’’
(e.g., the type is "unsigned" something) .

- Implement some cases and some special cases. This
may require identifying certain patterns and a list
of special cases -- all pointing to the same
meaning.

When there is a one-to-one correspondence between contexts
and meanings, then the solution is straightforward: connect
the context (prototype) to the meaning (body). This (the
C++ overloading technique) looks like a typical C function,
except that there are multiple definitions for the function,
one for each different context (prototype).

But what about multiple contexts that map into the same
meaning, multiple contexts that map into similar meanings,
or multiple contexts that are too numerous to itemize (e.g.,
arithmetic operations)? To address these problems, we need
to add two new features: (1) multiple contexts that map into
a single meaning, (2) inspecting the context to determine
the meaning in an ad hod way. This technology is fairly old
and implemented in most commands on most operating systems:
the command determines the context (based on the number of
parameters, the type of paramters, and options associated
with the parameters) and then determines the appropriate
meaning. Not only is the technology old, but these
programming techniques are known to almost all application
programmers: they know how to process "argc" and "argv" in
the "main" function. For example, a function for exponent
might handle the following patterns:

(1) Both the base and the exponent are integral

types. Use the normal multiplication and looping
(negative exponents just return zero) to produce the
result.

(2) The exponent is an integral type and the base is
a floating type. Use the normal multiplication,
division, and looping to produce the result.

(3) The exponent is a floating type. Use the "pow",
"powf", or "powl" functions to produce the result.

L4

I1S0O/JTC1/SC22/WG14 /N525 Page 3

In some cases the may be specialized versions of the
"pow" functions available to handle mixed arguments
(e.g., a "float" and a "long double").

Unfortunately, if we don’t give the programmers to
expressive notation that matches their needs (and,
presumably, it addresses their performance concerns) then
they will either produce automatically-generated volumes of
code (large, hard to maintain, error-prone to program) Or
avoid overloading and require the application programmer to
explicitly identify the meaning (error-prone to program,
hard to maintain, current practice in C).

INTERNAL NAMES

For each of the function bodies (possibly associated with
more than one context or meaning), the function must be
given a unique name so the linker can distinguish among the
function bodies. This wouldn’t be a problem for a single
source module because the compiler could generate the
correct hidden name and map the context to the meaning.
However, these hidden names must be agreed upon across
source modules, especially if they are compiled at different
times (e.g., libraries). There are several techniques
avilable to handle this problem:

(1) Mangle the names using a well known algorithm so
that the context (i.e., prototype) is mapped
(hashed) into the same abbreviation each time,
regardless of which source module is compiled or
when it is compiled.

(2) Allow overloading only in inline functions.
Since inline functions have no external linkage,
there isn’t any need for an developing an agreed
upon algorithm.

(3) Allow the programmer to specify the name of the
context. For example:

a5 g PR 19 |) o
short, int) ;

int exponent "int" (
(
(int, short) ;
(

int exponent "int"
int exponent "int"
int exponent "int" long, int) ;

int exponent "int" (int, long) ;

float exponent "float" 6 (float,float);

double exponent "double" 7 (float,double);

double exponent "double" 8 (double, float);

double exponent "double" 9 (double,double) ;

long double exponent "long double" 10 (float,long double);

long double exponent "long double" 11 (double,long double);

long double exponent "long double" 12 (long double,float) ;

long double exponent "long double" 13 (long double,double) ;

long double exponent "long double" 14 (long double,long double) ;

[G2IN= VSN O

The "exponent" function has four bodies associated

[V

ISO/JTC1/SC22/WG14 /N525 Page 4

with de:itint", 0 float!, . "double"; » and. ! long,
double". There are 14 meanings associated with
"exponent".

These functions would actually be implemented with a
"va_list":

int exponent "int" (int.context, ...)

switch (context)

case 1: /* get int and int */ break;
case 2: /* get short and int */ break;
case 3: /* get int and short */ break;
case 4: /* get long and int */ break;
case 5: /* get int and long */ break;
Ry

}

Here, this function’s internal name is, say,
"exponent int". The "context" parameter is passed,
determined by which context was matched. From an
implementation perspective, the context doesn’t have
to be passed as a parameter: there could be multiple
entry points to the function or a jump table within
the function. Regardless, it is possible to
implement this without any run-time overhead
(including avoiding the switch statement), yet with
no changes to the linker.

In summary, the C++ technique is understood, but requires
all meanings to be itemized, 2) requires name mangling, may
exceed the capability of linkers. The inline technigue
eliminates linker problems, but still requires itemizing all
the combinations of meanings. The explicit prefix method
allows the user to specify the prefix (user-supplied
mangling) and allows for the collapse of multiple cases into
a single case.

L6

