Tag Compatibility
Date: 21 December 1995
Author: Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan MN 55121

Email: tam@cray.com
Document Number: WG1l4 N522 (a.k.a. X3J11/95-123) Irvine
Related Documents: WG14 N453 (a.k.a. X3J11/95-054) Nashua
WG14 N404 (a.k.a. X3J11/95-005) Copenhagen
WG14/N396 (a.k.a. X3J11/94-081) Plano Minutes

DR#139
Abstract:

Currently, two structure, union, and enumeration types declared
in separate translation units ignore the tag name when
determining if the two types are compatible. The language is
better specified if the tag names are considered for all type
compatibility (except if no tag name is specified).

Proposal: Change the following words in the current C Standard:
6.1.2.6 Compatible Type and composite type
From:

Moreover, two structure, union, or enumeration types declared in
separate translation units are compatible if they have the same
number of members, the same member names, and compatible member
types; for two structures, the members shall be in the same order;
for two structures or unions, the bit-fields shall have the same
widths; for two enumerations, the members shall have the same values.

To:

Moreover, two structure, union, or enumeration types declared in
separate translation units are compatible if their tags and
members satisfy the following requirements. If one is declared
with a tag, the other shall be declared with the same tag. If
both are complete types, then the following additional requirements
apply. There shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared
with compatible types, and such that if one member of a corresponding
pair is declared with a name, the other member is declared with the
same name. For two structures, corresponding members shall be
declared in the same order. For two structures or unions,
corresponding bit-fields shall have the same widths. For two
enumerations, corresponding members shall have the same values.



Example:

The following example is no longer considered to be portable
because "struct tagl" in no longer compatible with either
"struct tag2" or "struct tag3" (different tag names). This is
useful because a translator can assume that pointers such as
"pst2" and "pst3" refer to different objects. Cray Research
compilers already make this assumption when the highest
optimization level is specified, and so when the example below
is run on a Cray-C90 computer both with and without optimization,
the following results are obtained:

St.ecy =035%.Ch Y C

X ic
y.c:
$ ./a.out
optimized
$ cc -00 x.c y.c
X0
v.C:
$ ./a.out
unoptimized
X.C | y.c
|
#include <stdio.h> struckwtag2md
int func{)s int ml; m2;
¥

struct tagl { structtagd. {

int ml, m2; int ml, m2;
} stl; Y
main() { int func(struct tag2 *pst2,

if (func(&stl,.&stl))- { structtag3 :*pst3){

printf ("optimized\n"); pst2->ml = 2;
} else { pst3->ml = 0; 4% aldias?g*/
printf ("unoptimized\n") ; return pst2->ml;

} }

}

Comments:

The above proposal makes an unnamed struct, union or enum
incompatible with a named one. It appears the committee
favors this approach.

26



