10

15

20

25

30

35

40

Restricted Pointer Considerations
WG14/N521 (X3J11/95-122)

Bill Homer
Tom MacDonald

Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121
homer@cray.com
tam @cray.com

21 December 1995

Introduction

There are some additional restricted pointer changes we can consider. None of these are essential,
but some we may find to be useful.

The first proposed change is to add the restrict keyword to some library functions when copying
between overlapping objects might introduce undefined behavior. At the moment, several library functions
do not say anything about copying between overlapping objects even though they introduce undefined
behavior.

The second change is to allow type qualifiers (like restrict) when declaring a parameter to have
an array type, which is then automatically adjusted to be a pointer. This is especially convenient for the
restrict keyword.

The last proposed change allows the programmer to declare a pointer to a constant value (as opposed
to a read-only value). This involves a combination of both the restrict and const keywords.

Library Changes

Several library functions have parameters that could be adorned with the restrict keyword.
These library functions are listed below.

#include <stdio.h>

int fprintf (FILE * restrict stream, const char * restrict format, ...);

int fscanf (FILE * restrict stream, const char * restrict format, <o) s

int printf(const char * restrict format, ...);

int scanf(const char * restrict format, ...);

int sprintf(char * restrict s, const char * restrict format, ...);

int sscanf(char * restrict s, const char * restrict format, ...);

#include <stdarg.h>

int vfprintf (FILE * restrict stream, const char * restrict format, va_list arg);
int vprintf (const char * restrict format, va_list arg);

int vsprintf(char * restrict 8, const char * restrict format, va_list arg);
char *fgets(char * restrict s, int n, FILE * restrict stream);

char *fputs(const char * restrict 8, FILE * restrict stream);

/7

V)

21 December 1995 Restricted Pointer Considerations WG14/N521 (X3J11/95-122)

10

15

20

25

30

35

40

45

50

size_t fread(void * restrict ptr, size_t size, size_t nmemb,
FILE * restrict stream);
size_t fwrite(void * restrict ptr, size_t size, size_t nmemb,
FILE * restrict stream);
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);
#include <stdlib>
int mbtowc(wchar_t * restrict pwc, const char * restrict s, size_t n);
size_t mbstowcs(wchar_t * restrict pwcs, const char * restrict s, size_t n);
size_t wcstombs(char * restrict s, const wchar_t * restrict pwcs, size_t n);
#include <string.h>
void *memcpy(void * restrict sl, const void * restrict s2, size_t n);
char *strcpy(char * restrict sl1l, const char * restrict s2):;
char *strncpy(char * restrict sl, const char * restrict s2, size_t n);
char *strcat(char * restrict sl1l, const char * restrict s2);
char *strncat(char * restrict sl, const char * restrict s2, size_t n);
size_t strxfrm(char * restrict sl, const char * restrict s2, size_t n);
char *strtok(char * restrict sl, const char * restrict s2);
size_t strftime(char * restrict s, size_t maxsize,
const char * restrict format, const struct tm * restrict timeptr);
#include <wchar.h>
int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);
int fwscanf (FILE * restrict stream, const wchar_t * restrict format, ...);
int wprintf (const wchar_t * restrict format, ...):
int wscanf (const wchar_t * restrict format, ...);
int swprintf(wchar_t * restrict s, const wchar_t * restrict format, ...);
int swscanf(wchar_t * restrict s, const wchar_t * restrict format, PRI)
int vfwprintf (FILE * restrict stream, const wchar t * restrict format,
va_list arg);
int vwprintf(const wchar_t * restrict format, va_list arg);
int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict format,
va_list arg);
char *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);
char *fputws(const wchar t * restrict s, FILE * restrict stream);
char *wcscpy(wchar_ t * restrict sl, const wchar_ t * restrict s2);
char *wcsncpy(wchar_t * restrict sl, const wchar t * restrict 82, size_t n);
char *wcscat(wchar_t * restrict sl, const wchar t * restrict s2);
char *wcsncat(wchar_t * restrict sl, const wchar t * restrict s2, size_t n);
size_t strxfrm(wchar_t * restrict sl1l, const wchar_t * restrict s2, size_t n);
wchar_t *wcstok(wchar_t * restrict sl, const wchar t * restrict s2,
wchar_t * restrict * restrict ptr););
void *memcpy(wchar_t * restrict sl, const wchar t * restrict s2, size_t n);
size_t strftime(wchar_t * restrict s, size_t maxsize,
const wchar_t * restrict format, const struct tm * restrict timeptr);
size_t mbrlen(const char * restrict s, size_t n, mbstate_t * restrict Ps);
size_t mbrtowc (wchar_ t * restrict pwc, const char * restrict s, size_t n,
mbstate_t * restrict ps);
size_t wcrtomb(char * restrict s, wchar_t wc, mbstate_t * restrict ps);
size_t mbstrowcs(wchar_t * restrict dst, const char * restrict * restrict src,
size_t len, mbstate_t *restrict ps);
size_t wcsrtombs(char * restrict dst, const wchar_t * restrict * restrict sre,
size_t len, mbstate_t * restrict ps);

In all cases except westok, mbstrowcs, and wesrtombs the qualifiers are on outermost pointer type
derivations, and so the proposed declaration is compatible with the current declaration.

gy 208

21 December 1995 Restricted Pointer Considerations WG14/N521 (X3J11/95-122)

10

15

20

25

30

35

We may also want to say that if the type va_list in the header <stdarg.h> is a pointer type,
then it shall be a restrict-qualified pointer type. This eliminates possible aliasing problems with
vEprint£ (for example).

Array Parameters

By ISO section 6.7.1, a declaration of a function parameter as ‘‘array of type’’ is adjusted to
““pointer to type.”” The following changes provide a means of expressing qualifiers for the adjusted type.

In ISO section 6.5.4, Declarators, in subsection Syntax, allow an optional type-qualifier-list in the
third form of direct-declarator:

direct-declarator [type-qualifier-list_opt constant-expression_opt]

Note that the VLA proposal also modifies this same line by allowing expressions that are not constant.

In ISO section 6.5.4.2, Array Declarators, in subsection Constraints, add: Type qualifiers shall
appear preceding or in place of a size expression only in a declaration of a function parameter of
array type, and then only in the outermost array type derivation.

In ISO section 6.7.1, Function Definition, under subsection Semantics, modify lines 23-24 to read: A
declaration of a parameter as ‘‘array of rype’’ shall be adjusted to ‘“qualified pointer to type’’ (where
the type qualifiers are those specified within the square brackets of the array type derivation), ...

Rationale

This extension is especially convenient for using the restrict qualifier with variable length array
parameters, as shown in the following example. The extension makes the first declaration of £ conform-
ing, and equivalent to the second. The first declaration both documents the role of parameter m, and more
clearly conveys the fact that parameters a and b refer to two dimensional arrays.

Example 1

void f£(int m, int n, float al[restrict m][n],
float b[restrict m][n]);

void f(int m, int n, float (* restrict a) [n],
float (* restrict b)[n]):;

Restricted Pointer to Const

Add to the semantics of restricted pointers the new third sentence in the following paragraph:

During each execution of B, let O be the array object that is determined dynamically by all references
through pointer expressions based on P. Then all references to values of O shall be through pointer expres-
sions based on P. If P was designated as a restrict-qualified pointer to a const-qualified type, then
none of the references shall modify the value of O. Furthermore, if P is assigned the value of a pointer
expression E that is based on another restricted pointer object 2 associated with block B2, then either the
execution of B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assign-
ment. If these requirements are not met, then the behavior is undefined.

21 December 1995 Restricted Pointer Considerations WG14/N521 (X3J11/95-122)

Rationale

This change enables a declaration to assert that an object referred to through a pointer has a constant
(i.e., unmodified) value. This is especially useful for dynamically allocated data structures.

Without this change, a translator cannot deduce from presence of const in the declaration of x
5 below that the value of the associated object (or array) does not change during the execution of g.

Example 2
void g(const float * restrict x /*, ... */)
{
/* Without the change, const does not mean constant: */
10 float *y = (float *)x;
*vy = 0.0;
/* The change renders this function non-conforming. */
}

ety

