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Introduction

15 This document is a full specification for a proposed extension to Standard C that adds com-
plex data types. The specification is given as modifications to document WG14/N457 (a.k.a.
X3J11/95-058) C9X Draft 4, and will track the progress of the C9X Draft specification.

This document also includes rationale, summarizing some of the discussions related to this
proposed extension.

20 This document, ‘‘Complex Type Simplified,”” focuses on basic language issues for complex
types and the basics of the complex elementary math functions. It does not specify behavior for
the special values of signed zeros, NaNs, and infinities for those implementations that support
them.

This document does not include imaginary types as part of the proposed extension. The
25  reasons for this are discussed in the rationale part of section 6.1.2.5.

Sections that can be regarded as extending or modifying a particular section of C9X Draft 2
are marked with the section numbers.

Changes

The following major changes appear in this document:
30 e For cexp, cpow, and cabs changes were made to indicate an output error may occur.

e clog now indicates that it’s an input error if the argument is zero (not ouput error).
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5.2.4.2 Numerical limits
5.2.4.2.2 Characteristics of floating types <float.h>

Add after the first sentence:
The characteristics of each of the real and imaginary parts of £loat complex,

5 double complex, and long double complex numbers are the same as for the
corresponding real floating types.

RATIONALE:
The specification that the parts of the complex floating types have the same characteristics as the
corresponding real floating types, including their numerical limits, implies that the underlying

10  implementation of the complex floating types is to be Cartesian. With this requirement, the lim-
its for the complex plane are clearly and easily defined in terms of the limits for real floating
types. See rationale with section 6.1.2.5 for further discussion.
6.1.1 Keywords
Add to the list of keywords:

15 complex
Semantics
The token complex becomes a keyword when the header <complex.h> is included, and not
before.
Add to the list of forward references:

20 Forward references: complex mathematics (7.14)
RATIONALE:

Since some C programs already define the type complex as a named type, this identifier
only becomes a keyword when the <complex.h> header is included. This avoids conflicts with
existing usage, and allows implementations supporting freestanding environments to avoid the

25  burden of implementing a complex type. One simple implementation that avoids this conflict is
to define a macro inside the header such as:
##define complex _Complex
which uses an identifier _Complex that is in the implementor’s name space. The implementa-
tion recognizes _Complex as a type. It is possible to move complex into the regular list of
30 standard keywords if desired.
6.1.2.5 Types
Replace first sentence of sixth paragraph with:
There are three real floating types, designated as £1oat, double, and long double.
Add the following two paragraphs:
35 There are three complex floating types, designated as f£loat complex, double
complex, and long double complex. The real and imaginary parts of the com-
plex floating types each have the same representation as the corresponding real float-
ing types. The set of values of the type f£loat complex is a subset of the set of
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values of the type double complex, the set of values of the type double
complex is a subset of the set of values of the type long double complex.

The integral types and the real floating types are collectively called the real types.
The real floating types and the complex floating types are collectively called the float-

ing types.
RATIONALE:

The complex extension to C is intended to provide as direct a mapping as possible of com-
plex mathematics (for example, complex algebra or complex analysis) onto the C language. This
mapping should be as close as possible in both how it is expressed and the results that are
obtained. Because of the inherent characteristics of the C language and of digital computer sys-
tems, this mapping may be less than perfect, but this mapping should still be the guiding princi-
ple for the extension.

The statement ‘“The real and imaginary parts of the complex floating types each have the
same representation as the corresponding real floating types’’ is the same as saying that the
underlying implementation of the complex types is Cartesian. This implementation is explicitly
stated so that behaviors can be defined simply and unambiguously. If the underlying representa-
tion is not explicit, the description of the underlying implementation, limits, promotion rules, and
behavior of math functions is very abstract. Therefore, if one representation is to be selected,
Cartesian is the most natural for virtually all modern computers. This specification is consistent
with the Fortran 90 specification of complex types. Other topologies, such as polar, are useful for
many problems but are not defined by this extension. When needed, users can define additional
functions or macros in terms of the underlying Cartesian implementation.

This extension does not include integral types. However, the addition of complex integral
types at some future date would be upward compatible with the current proposal.

This extension does not include imaginary types. Inclusion of imaginary types is also being
proposed and discussed by the committee. The justification for imaginary types is that these are
necessary in order to avoid generation of undesired NaNs, to avoid getting the sign of zero wrong
when infinities and minus zeros are part of a complex operand, and to get efficient arithmetic
when a binary operator has both a real and a complex operand.

The imaginary types are not needed because, in the vast majority of complex arithmetic
cases, the sign of zero does not matter, and NaNs and infinities provide equal information.
Signed zeros typically do not matter because they do not provide the same information with the
complex plane that they do with the real number line (i.e., the direction of underflow). NaNs and
infinities provide equal information with the complex plane because both indicate something
exceptional happen. Since there are many infinities present in the complex plane, infinities do
not provide the same information with the complex plane as with the real number line. (i.e., the
direction of overflow). Acknowledgment that NaN and infinity values give equal information,
and that +0 and —0 provide equal information, allows an implementation to provide efficient
operations through standard optimizations. For example:

float * complex — float*real + float*imag
and not necessarily:

float * complex — (float*real - 0.0*imag) + (float*imag + 0.0*real)

In summary, the costs associated with adding imaginary types are not justified by the
benefits gained.
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6.1.3 Constants
6.1.3.1 Floating constants

Syntax
floating-constant:
! real-floating-constant
complex-floating-constant

real-floating-constant:
fractional-constant exponent-part " real-suﬂix
digit-sequence exponent-part rea -su]ﬁx

10 complex-floating-constani:
fractional-constant exponent-part complex- su]ﬁx
digit-sequence exponent-part complex-suﬂix
digit-sequence imaginary-suffix

fractional-constant:
15 dlgtt-sequence . digit-sequence
digit- sequence g

exponent-part:
@ szgn dtglt -sequence
szgn dtgtt-sequence

20 sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

25 complex-suffix:
float-suffix imaginary-suffix
imaginary-suffix float-suffix
long-suffix imaginary-suffix
imaginary-suffix long-suffix
30 imaginary-suffix

real-suffix:
float-suffix
long-suffix

float-suffix: one of
35 £ F

long-suffix: one of
l1 L

imaginary-suffix:
i
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Semantics

An unsuffixed floating constant has type double. If suffixed by the letter £ or F, it has type
£loat. If suffixed by the letter 1 or L, it has type long double. If suffixed by the letter i it
has type double complex. If suffixed by both the letters i and £ or F, it has type £loat
complex. If suffixed by both the letters i and 1 or L, it has type long double complex. A
floating constant that has a complex type specifies the value of the imaginary part, and the "real”
part has the value zero. Any floating constant suffixed with i is called a complex floating con-
stant. Any floating constant not suffixed with i is called a real floating constant.

A complex floating constant shall not occur before the <complex.h> header is included.

RATICNALE: .

Either i or j could be selected for the imaginary suffix used to form complex constants.
And in fact, both could be allowed. However, allowing both would add unnecessary duplication
to the language.

The production rule digit-sequence imaginary-suffix is purely for notational convenience
and is not necessary for completeness. It allows the form 1i to be used rather than the
equivalent 1.i or1.04i.

Inclusion of the <complex.h> header is not really necessary to define a complex constant
because these constants are upward compatible. However, as mentioned earlier, this allows
implementations supporting freestanding environments to avoid the burden of implementing a
complex type.

6.2 Conversions
6.2.1 Arithmetic operands

Add this section:

6.2.1.4.1 Complex types

When a value of complex type is promoted or demoted to another complex type, both parts
follow the same promotion and demotion rules as for the corresponding real types.

When a value of real type is promoted to a complex type, the real part of the complex value
gets the same value as if the promotion was to the corresponding real type and the ima-
ginary part of the complex value gets the value of positive zero (+0).

When a value of complex type is demoted to a real type, the value of the imaginary part of
the complex value is discarded and the value of the real part gets demoted according to the
demotion rules for the corresponding real type..

6.2.1.5 Usual arithmetic conversions
Replace this section with:

All types have three type attributes called the dimension, the format, and the length. The
dimension attribute specifies whether the values of the type can be represented on a one
dimensional line, (i.e., real numbers) or on a two dimensional plane, (i.e., complex
numbers). The format attribute specifies whether the values of the type are represented
with an exponent part, (i.e., floating numbers) or without an exponent part, (i.e., integral
numbers). The length attribute specifies how many bits are used to represent the magnitude
and precision of the type. The values for each of these attributes are ranked, from highest
to lowest, as shown below. For example, complex ranks higher than real for the dimension
attribute.
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Complex Type Simplified
floating integral
dimension | format length length
5 complex floating | long double | unsigned long
real integral | double signed long
float unsigned int
10 signed int
15 Many binary operators that have operands of arithmetic types cause implicit conver-

20

.

30

35

40

45

50

sions of one or both operands. The purpose of the conversions is to yield a common format
and length for the two operands which is the type of the result. These implicit conversions
of the operands are called the usual arithmetic conversions.

The conversions shall preserve the original magnitude and precision of both operands
except that precision may be lost when an integral type is converted to a floating type. This
will occur if the magnitude of the integer is too great for the mantissa of the floating type to

represent it exactly.
The rules for the usual arithmetic conversions are:
1) The dimension of the result type is that of the higher ranking dimension of the
operands.
2) The format of the result type is that of the higher ranking format of the operands.

3) If the format of the result type is floating then:
the length of the result type is that of the higher ranking floating length of
the operands.
else the format of the result type is integral and:
the integral promotions are performed on both operands, and the length of

the result type is that of the higher ranking integral length of the promoted
operands with one exception. The exception is that if one operand has type
signed long and the other has type unsigned int and if a sigmed
long cannot represent all the values of an unsigned int, the length of
the result is unsigned long.

4) After the result type is determined and before the binary operation is performed,
any operand that does not already have the same type as the result type is pro-
moted to the result type.

RATIONALE:

The conversion rules spell out an unambiguous path for determining the result type of a
binary operator and for specifying any conversions to be done on the operands. However, if it is
more efficient in a given implementation to take a different path to get the same result, that is
allowed. The primary requirement is that the result must be the same “‘as if’’ all the arithmetic
conversion rules were followed.

The standard specifies a set of promotion rules such that if the user writes code that assumes
these promotions will be done, then the code will be portable across conforming implementa-
tions.

An implementation is not required to actually convert the operands as long as the result of
the binary operation is the same as the result obtained if all the conversion rules were followed.
Similarly, operands may be converted when not required as long as the result of the binary opera-
tion is the same as the result obtained if all the conversion rules were followed. Since an imple-
mentation can assume that NaN and infinity values provide equal information for complex types,
optimizations can be performed without regard to these exceptional values.
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6.3 Expressions

6.3.2 Postfix operators

6.3.3 Unary operators

6.3.4 Cast operators

6.3.5 Multiplicative operators

6.3.6 Additive operators

6.3.7 Bitwise shift operators

6.3.10 Bitwise AND operator

6.3.11 Bitwise exclusive OR operator
6.3.12 Bitwise inclusive OR operator
6.3.13 Logical AND operator

6.3.14 Logical OR operator

6.3.15 Conditional operator

No change to the above sections.

RATIONALE:

A complex number is an arithmetic type and a scalar type. Therefore, all operators that
apply to arithmetic and scalar types also apply to complex types. If complex integral types are
ever added to the language, then the constraints for some, but not all, of the operators must

change “‘integral type’’ to ‘‘real integral type’’.
The following are mathematical formulas for the basic complex operations:
z,+z,=(a+bi)+ (c+di)=(a+c)+(b+d)i
Z,-z,=(a+bi)—(c+di)=(a-c)+ (b-d)i
ZI*22=(a+bi)*(c+a’i)=(ac—bd)+(bc+ad)i g
z,+2,=(a+bi)+(c+di) = [(ac + bd) + (¢ + &) + [(bc = bd) + (¢ + &)

The standard specifies what the result of an operation must be but does not specify how an
implementation is to perform the operation. On digital computers with finite range of represent-
able floating point values, operations such as complex division can lead to overflow or underflow
of intermediate values even when the mathematical result is with the range of representable
values. Unless the standard specifies an algorithm for all implementations to use, whether and
when overflow or underflow occurs and the speed of the operation may vary from implementation
to implementation.

If code is written for implementations that support special values such as signed zeros,
NaNs, and infinities, and if the code is written with the assumption that these values could arise
during execution of the program, then the user needs to know how that implementation performs
these operations, and it is up to the user to decide the meaning of these special values in the con-
text of the program.

6.3.8 Relational operators
Change the first constraint to:
both operands have real type;

Change the first sentence of Semantics to:

If both of the operands have real type, the usual arithmetic conversions are performed.
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RATIONALE:

While equality and inequality have clear mathematical meaning for complex numbers,
greater than or less than do not have any standard meaning. A user who wants to design an order-
ing for complex values, can write a macro or function, similar to the following:

#define C_LE(zl,z2) (cabs(zl) <= cabs(z2))

This gives the user control over the meaning of relational operations with complex operands.

6.3.9 Equality operators
Add to Semantics:

For IEEE implementations, if a NaN appears in either operand when comparing two
complex numbers, they compare unequal.

6.5 Declarations
6.5.2 Type specifiers

Add to the list of type-specifiers:

complex

Add to the set of type-specifiers:
e float complex
e double complex
e long double complex

6.5.6 Type definitions

Remove or modify the example that gives the name complex fo a structure type.
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7 Library

Add the following sections:

7.14 Complex mathematics <complex.h>

The header <complex.h> defines four macros and declares several mathematical functions.

5 These functions take double complex arguments and return double or double complex
values as specified below. This header (as currently defined) must be included to declare com-
plex types or to create a complex constant.

The functions are:

csin
10 ccos
cexp
clog
cpow
csqrt
15 cabs
cimag
conj
creal

The macros are:
20 complex
which expands into implementation-defined spelling for declaring complex types, and

CMPLXF
CMPLX
CMPLXL

25  which are described in 7.14.1.

7.14.1 Complex operators

7.14.1.1 The CMPLXF macro
Synopsis

#include <complex.h>
30 float complex CMPLXF(float x, float y);

Description

The cMPLXF macro behaves like an operator that creates a value with type f£loat
complex. If either argument is not of type £1loat, it is first converted to type £loat.

Returns

35 The CMPLXF macro returns a value with type £loat complex whose real partis x
and whose imaginary part is y.
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7.14.1.2 The cMPLX macro
Synopsis

#include <complex.h>
double complex CMPLX(double x, double y);

Description

The cMPLX macro behaves like an operator that creates a value with type double
complex. If either argument is not of type double, it is first converted to type
double.

Returns

The CcMPLX macro returns a value with type double complex whose real partis x
and whose imaginary part is y.

7.14.1.3 The cMPLXL macro
Synopsis

#include <complex.h>
long double complex CMPLXL(long double x, long double y);

Description

The CMPLXL macro behaves like an operator that creates a value with type long
double complex. If either argument is not of type long double, it is first con-
verted to type long double.

Returns

The CMPLXL macro returns a value with type long double complex whose real
partis x and whose imaginary part is y.

RATIONALE:

Various methods have been proposed for creating a complex number from two
numbers. One proposed method is to use imaginary constants as in the expression:

X +y * 1.0i

real

This method has the advantage of adding only a small amount of syntax to the language and is a
compact form in many expressions. But IEEE implementations may require a way to create com-
plex values where either the real or imaginary parts are special values such as +c, -, and NaN,
and this method does not always produce the desired complex result. For example, if y has the

value +eo, and the appropriate optimizations are not performed, then:

y * 1.04
=> (+c) * (0.0, 1.0)
=> [(40 * 0.0), (+= * 1.0)]
=> (NaN, +)

when the desired result is:
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Another proposed method is to use something similar to compound literals as the expres-
sion:

(double complex){ ._real = x, ._imag =y }

The full specification of compound literals is defined in document WG14/N357 and X3J11/94-
042, ““X3J11 Technical Report — Compound Literals.”” This approach builds upon that
specification and assumes that complex numbers are similar to structures with the real and ima-
ginary parts having the names _real and _imag respectively (although the order is still unim-
portant). This method could be exploited to replace the cMPLX* macros.

Yet a third method is an infix operator as in the expression:
x® vy

Choosing the suitable character(s) for the ® operator is difficult.

By specifying macros to create complex values from real values, each implementation can
choose a method most appropriate for that implementation.

7.14.2 Complex math functions

Unless otherwise specified, the domain (or region) and range for all complex math functions
is the complex plane with the real and imaginary parts defined for all representable values.

An implementation may set errno but is not required to.

Whenever there are multiple mathematical values for a complex function, (multi-valued
complex functions) the return value of the function shall be the principal value of the function.
Additional rules may be given for a specific function.

For IEEE implementations, the behavior of these functions, if the input contains a NaN, an
°o, OT @ negative zero, is not specified.

The csin function
Synopsis

#include <complex.h>
double complex csin(double complex z);

Description

The csin function selects the sine of z, where the real part of z is regarded as a
value in radians.

Returns
The csin function returns the sine value.
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The ccos function
Synopsis

#include <complex.h>
double complex ccos(double complex z);

Description
The ccos function computes the cosine of z, where the real part of z is regarded as
a value in radians.

Returns
The ccos function returns the cosine value.

The cexp function
Synopsis

#include <complex.h>
double complex cexp(double complex z);

Description
The cexp function computes the exponential function of z, where the imaginary part
is regarded as a value in radians. An output error may occur if the magnitude of z is|
too large.

Returns

The cexp function returns the exponential value.

The clog function
Synopsis

#include <complex.h>
double complex clog(double complex z);

Description

The clog function computes the natural logarithm of z. An input error occurs if the|
argument is zero.

Returns

The clog function returns the principal value of the natural logarithm with the ima-
ginary part w of the result in the range -© < w <= n. The imaginary part of the
result is m only when the real part of the argument is less than zero and the imaginary
part of the argument is zero. The sign of the imaginary part of the log is the same as
the sign of the imaginary part of z.
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The cpow function
Synopsis

#include <complex.h>
double complex cpow(double complex zl, double complex z2);

Description

The cpow function computes z1 raised to the power z2. An input error occurs if
z1 is zero and z2 is not an integral value. An output error may occur if the magni-|
tude of z1 or z2 is too large.

Returns

The cpow function returns the value of z1 raised to the power z2. For
cpow(0.0,0.0) the return valueis 1.0 + 0.04i.

The csqgrt function
Synopsis

#include <complex.h>
double complex csqgrt(double complex z):;

Description
The esqgrt function computes the square root of z.
Returns

The csqrt function returns the principal value with the real part greater than or
equal to zero. If the real part of the result is not zero, then the sign of the imaginary
part of the root is the same as the sign of the imaginary part of z. If the real part of the
result is zero, then the imaginary part is greater than or equal to zero.

The cabs function
Synopsis

#include <complex.h>
double cabs(double complex z);

Description

The cabs function computes the magnitude of a double complex number z. An out-|
put error may occur.

Returns
The cabs function returns the value of the magnitude of z.
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The cimag function
Synopsis

#include <complex.h>
double cimag(double complex z);

Description
The cimag function computes the imaginary part of z.
Returns
The cimag function returns the value of the imaginary part of z.

The conj function
Synopsis

#include <complex.h>
double complex conj(double complex z);

Description
The conj function computes the conjugate of z.
Returns
If z has the value of x+yi, the conj function returns the value of x—yi.

The creal function
Synopsis

#include <complex.h>
double creal(double complex z);

Description
The creal function selects the real part of z.
Returns
The creal function returns the the value of the real part of z.

RATIONALE:

There is no explicit mention of errno in the descriptions of the complex math functions.

Section 4.1.3 of the standard states:

The value of errno is zero at program startup, but is never set to zero by any library
function. The value of errno may be set to nonzero by a library function call
whether or not there is an error, provided the use of errno is not documented in the
description of the function in the standard.

None of the complex math functions are required to use errno as an error indicator.

Therefore, whether errno is changed by any of these functions, is unspecified.

The terms “‘input’” and “‘output’” errors are used instead of ‘‘domain’’ and “‘range’’ errors

SO as to not imply that errno is set to either EDOM or ERANGE.
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The type double complex was chosen for the complex functions to correspond to type

double for the functions in <math.h>. More functions can be added to the list if there is
sufficient demand.

No specific proposal is made here for handling complex numbers by the printf and
5 scanf function families. Explicit use of cimag and creal are sufficient to make these func-
tions perform with complex numbers.
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