10

15

20

25

30

35

40

45

Complex Arithmetic <complex.h>
WG14/N517 X3J11/95-118 (Draft 12/21/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_thomas@taligent.com

This is a proposal for adding the CCE <complex.h> header to C9X.

7.x Complex arithmetic <complex.h>

The header <complex.h> defines macros and declares functions that support complex
arithmetic.

The macro
_Imaginary I

expands to an expression with the const-qualified imaginary type that corresponds to the
narrowest real floating type used for expression evaluation! and with the value of the
imaginary unit.

The macro
I
is defined to be _Imaginary I.

[Positing such a constant is a natural analog to the mathematical notion of augmenting the
reals with the imaginary unit. It allows writing imaginary and complex expressions in
common mathematical style, for example x + y*I. Note that the multiplication here
affects translated code, but does not necessitate an actual floating-point multiply, nor does
the addition necessitate a floating-point add.

The choice of I instead of 1 concedes to the widespread use of the identifier 1 for
other purposes.

The scheme for defining I and _Imaginary_TI establishes a degree of uniformity in
the designation of the imaginary unit as I, but offers flexibility to use a different identifier
for the imaginary unit and to use I for other purposes. For example, one might follow the
inclusion of <complex.h> with

#define j _Imaginary I
#undef I

An 1 suffix to designate imaginary constants is not required. Multiplication by I
provides a sufficiently convenient and more generally useful notation for imaginary terms.

1 If PLT_EVAL_METHOD equals 0, 1, or 2, then _Imaginary_T has type £1oat imaginary,
double imaginary, or long double imaginary, respectively.

/67

10

15

20

25

30

35

WG14/N517 X3J11/95-118 Draft 12/21/95

Lacking an imaginary type, other proposals required macros in order to create certain
special values. For example, an “imaginary” infinity could be created by
CMPLX (0.0, INFINITY). With the imaginary type, imaginary infinity is simply the value of
INFINITY*I. And, in general, the values of y*/ and x + y*I, where x and y are real floating
values, cover all values of the imaginary and complex types, hence eliminating this need for
the complex macros.]

7.x.1 Overloading

Subsequent subclauses specify overloading macros which accept real, imaginary, or
complex arguments. A floating type is characterized by its kind (real, imaginary,
complex) and its corresponding real type (float, double, long double). Use of a
macro invokes a function whose type for each overloading parameter has the same kind
as the corresponding argument and has the corresponding real type that is the wider of

— the corresponding real types for all floating arguments to the overloading parameters
— the narrowest real floating format used for expression evaluation

For the returned value, the kind is determined by the function and the argument kind(s) as
specified below, and the corresponding real type matches the corresponding real type of
the overloading parameters.

Examples

1. Subclause 7.x.2 specifies that the overloading macro for the cos function accepts a
real, imaginary, or complex argument, that cos of a complex is complex, and that cos
of an imaginary is real. The following table shows the result type, given an
expression evaluation method (characterized by PLT_EVAL_METHOD) and an argument

type.

| FLT_EVAL_METHOD argument type 3¢ result type
0 float imaginary float
0 double imaginary double
0 long double imaginary 1long double
0 float complex float complex
0 double complex double complex
0 long double complex long double complex
1 float imaginary double
1 double imaginary double
1 long double imaginary 1long double
1 float complex double complex
1 double complex double complex
1 long double complex long double complex
2 float imaginary long double
2 double imaginary long double
2 long double imaginary 1long double
2 float complex long double complex
2 double complex long double complex
2 long double complex long double complex

2. For the pow function

double pow(double x, double y);

2 Complex Arithmetic <complex.h>

/6%

10

15

20

25

30

35

40

45

50

Draft 12/21/95 WG14/N517 X3J11/95-118

both x and y are overloading parameters. Subclause 7.x.2 specifies that the
overloading macro for pow accepts real, imaginary, or complex arguments and that
pow is complex if either of its arguments is imaginary or complex. With
FLT_EVAL_METHOD equal 1 and

#include <complex.h>
float complex a;
double complex r;
long b;

I Rais o™/

r = pow(a, b);

the call to pow behaves like an invocation of a function such as
double complex _Pow(double imaginary x, double y);

The implementation doesn’t actually require different internal functions for all the
combinations of parameter kinds, as

double complex _Pow(double complex x, double complex Y);

would suffice whenever the corresponding real type is double. However, more
overloads might allow more efficient implementation.

7.x.2 <math.h> functions

When the header <complex.h> is included, the overloading macros for these
<math.h> functions accept imaginary and complex (as well as real) arguments:

acos cos acosh cosh exp fabs
asin sin asinh sinh log
atan tan atanh tanh sqgrt

The return type for £abs is always real. Otherwise, for each overloading macro, if the
argument is complex then so is the return type. If the argument is imaginary then the
return type is real, imaginary, or complex, as appropriate for the particular function: if
the argument is imaginary, then the return types of cos and cosh are real; the return
types of sin, tan, sinh, tanh, asin, and atanh are imaginary; and the return types of
the others are complex.

7x.2.1 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEEE
implementations), the sign of zero distinguishes one side of a cut from another so the
function is continuous (except for format limitations) as the cut is approached from either
side. For example, for the square root function, which has a branch cut along the
negative real axis, the top of the cut, with imaginary part +0, maps to the positive
imaginary axis, and the bottom of the cut, with imaginary part -0, maps to the negative
imaginary axis.

Implementations with an unsigned zero cannot distinguish the sides of branch cuts.

They map a cut so the function is continuous as the cut is approached coming around the
finite endpoint of the cut in a counter clockwise direction. (Branch cuts for the functions

Complex Arithmetic <complex.h> 3

/43

10

15

20

30

35

40

45

50

WG14/N517 X3J11/95-118 Draft 12/21/95

specified here have just one finite endpoint.) For example, for the square root function,
coming counter clockwise around the finite endpoint of the cut along the negative real
axis approaches the cut from above, so the cut maps to the positive imaginary axis.

7x.2.2 The acos macro

For an imaginary or complex argument z, the acos macro computes the arc cosine of
z, with branch cuts outside the interval [-1, 1] along the real axis; it returns the arc cosine
of z, in the range of a strip mathematically unbounded along the imaginary axis and in the
interval [0, =] along the real axis.

7x.2.3 The asin macro
For an imaginary or complex argument z, the asin macro computes the arc sine of z,
with branch cuts outside the interval [-1, 1] along the real axis; it returns the arc sine of

z, in the range of a strip mathematically unbounded along the imaginary axis and in the
interval [-7/2, ~/2] along the real axis.

7.x.2.4 The atan macro

For an imaginary or complex argument z, the atan macro computes the arc tangent of
z, with branch cuts outside the interval [-i, i] along the imaginary axis; it returns the arc
tangent of z, in the range of a strip mathematically unbounded along the imaginary axis
and in the interval [-7/2, ~/2] along the real axis.
7x.2.5 The cos macro

For an imaginary or complex argument z, the cos macro computes and returns the
cosine of z.

7.x.2.6 The sin macro

For an imaginary or complex argument z, the sin macro computes and returns the
complex sine of z. .

7x.2.7 The tan macro

For an imaginary or complex argument z, the tan macro computes and returns the
tangent of z.

7.x.2.8 The acosh macro

For an imaginary or complex argument z, the acosh macro computes the arc
hyperbolic cosine of z, with a branch cut at values less than 1 along the real axis; it
returns the arc hyperbolic cosine of z, in the range of a half-strip of non-negative values
along the real axis and in the interval [-ir, iz] along the imaginary axis.

7.x.2.9 The asinh macro

For an imaginary or complex argument z, the asinh macro computes the arc
hyperbolic sine of z, with branch cuts outside the interval [-i, i] along the imaginary axis;
it returns the complex arc hyperbolic sine of z, in the range of a strip mathematically
unbounded along the real axis and in the interval [-i/2, in/2] along the imaginary axis.

4 Complex Arithmetic <complex.h>

24Y

10

15

20

25

30

35

40

45

50

Draft 12/21/95 WG14/N517 X3J11/95-118

7x.2.10 The atanh macro

For an imaginary or complex argument z, the atanh macro computes the arc
hyperbolic tangent of z, with branch cuts outside the interval [-1, 1] along the real axis; it
returns the complex arc hyperbolic tangent of z, in the range of a strip mathematically
unbounded along the real axis and in the interval [-in/2, in/2] along the imaginary axis.
7x.2.11 The cosh macro

For an imaginary or complex argument z, the cosh macro computes and returns the
hyperbolic cosine of z.

7x.2.12 The sinh macro

For an imaginary or complex argument z, the sinh macro computes and returns the
hyperbolic sine of z.

7.x.2.13 The tanh macro

For an imaginary or complex argument z, the tanh macro computes and returns the
hyperbolic tangent of z.

7.x.2.14 The exp macro

For an imaginary or complex argument z, the exp macro computes and returns the
complex base-e exponential of z. ’

7x.2.15 The log macro

For an imaginary or complex argument z, the 1og macro computes the natural (base-
e) logarithm of z, with a branch cut along the negative real axis; it returns the complex
natural logarithm of z, in the range of a strip mathematically unbounded along the real
axis and in the interval [-ix, iz] along the imaginary axis.
7.x.2.16 The sqrt macro

For an imaginary or complex argument z, the sqrt macro computes the square root of

z, with a branch cut along the negative real axis; it returns the square root of z, in the
range of the right half-plane.

7x.2.17 The fabs macro

For an imaginary or complex argument z, the fabs macro computes and returns the
absolute value (also called norm, modulus, or magnitude) of z.

7x.2.18 The pow macro

If either the first argument x or the second argument y is imaginary or complex, the
pow macro computes the power function x¥, with a branch cut for the first parameter
along the negative real axis; it returns the complex power function xY.

Complex Arithmetic <complex.h> 5

10

15

20

25

30

35

40

45

50

WG14/N517 X3J11/95-118 Draft 12/21/95

7.x.3 Complex-specific functions

The header <complex.h> declares the following functions which pertain specifically
to complex arithmetic. Each function has an overloading macro that accepts an argument
of real, imaginary, or complex type. Determination of the type for an overloading
parameter is as described in 7.x.2.1. Suppressing the overloading macro makes available
a function with the prototype in the synopsis.
7x.3.1 The arg function
Synopsis

#include <complex.h>
double arg(double complex z);

Type determination by the overloading macro follows the same pattern as for fabs.
Description

The arg function computes the argument or phase angle of z, with a branch cut along
the negative real axis.

Returns

The arg function returns the argument or phase angle of z, in the range [-r, x].
7x.3.2 The conj function
Synopsis

#include <complex.h>
double complex conj(double complex z);

The kind (real, imaginary, or complex) for the type of the function invoked by the
overloading macro matches the kind of the argument.

Description

The conj function computes the complex conjugate of z, by reversing the sign of its
imaginary part, if any.

[Note that conj (3.0) yields 3.0, not 3.0 - 0.0.]
Returns
The conj function returns the complex conjugate of z.
7.x.3.3 The imag function
Synopsis

#include <complex.h>
double imag(double complex z);

6 Complex Arithmetic <complex.h>

e

10

15

20

25

30

35

40

45

50

55

Draft 12/21/95 WG14/N517 X3J11/95-118

Type determination by the overloading macro follows the same pattern as for fabs.
Description
The imag function computes the imaginary part of z.
Returns
The imag function returns the imaginary part of z.
7x.3.4 The proj function
Synopsis

#include <complex.h>
double complex proj(double complex z);

The return type is real if the argument is real; the return type is complex if the
argument is complex or imaginary.

Description

The proj function computes a projection of z onto the Riemann sphere: z projects to
z except that all infinities (even ones with one infinite part and one NaN part) project to
positive infinity on the real axis.

Returns
The proj function returns a projection of z onto the Riemann sphere.

[Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities and the Riemann sphere with its single infinity. The complex plane
is better suited for transcendental functions, the Riemann sphere for algebraic functions.
The complex types with their multiplicity of infinities provide a useful (though imperfect)
model for the complex plane. The proj function helps model the Riemann sphere by
mapping all infinities to one, and should be used just before any operation, especially
comparisons, that might give spurious results for any of the other infinities.

Note that a complex value with one infinite part and one NaN part is regarded as an
infinity, not a NaN, because if one part is infinite, the complex value is infinite independent
of the value of the other part. For the same reason, £abs returns an infinity if its argument
has an infinite part and a NaN part.]

7.x.3.5 The real function
Synopsis

#include <complex.h>
double real(double complex z);

Type determination by the overloading macro follows the same pattern as for imag
(7.x.3.3).

Description
The real function computes the real part of z.

Complex Arithmetic <complex.h> 7

WG14/N517 X3J11/95-118 Draft 12/21/95

Returns

The real function returns the real part of z.

8 Complex Arithmetic <complex.h>

166

