Complex Arithmetic—C9X Edits
WG14/N516 X3J11/95-117 (Draft 12/21/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_ thomas@taligent.com

This is a proposal for changes to existing parts of the C9X draft document, in
order to incorporate CCE. The edits refer to CSX Draft 3. (Subsequent C9X
drafts are generally satisfactory for understanding the proposed edits.)

6.1.1 Keywords
In Syntax, add these keywords:

complex
imaginary

Append to Semantics this paragraph:

The tokens complex, and imaginary become keywords when the header
<complex.h> is included, and not before.

6.1.2.5 Types

In the first sentence of the sixth paragraph, replace “floating types” with “real floating
types”.

After the sixth paragraph, insert these paragraphs:

There are three imaginary types, designated as float imaginary,
double imaginary, and long double imaginary. Each has the same
representation and alignment requirements as the corresponding real type. The
value of an object of imaginary type is the value of the real representation times
the imaginary unit.

There are three complex types, designated as float complex,
double complex, and long double complex. Each is represented internally by
a contiguous pair of representations of the corresponding real type, aligned in an
implementation-defined manner appropriate to the real type. The low-address and
high-address elements of the pair represent the real part and imaginary part,
respectively, of the complex value.

The real floating, imaginary, and complex types are collectively called the
floating types.

[Although not present in older complex arithmetic facilities, e.g. FORTRAN’s, the
lmaginary types naturally model the imaginary axis of complex analysis, promote
computational and storage efficiency, and help capture the completeness and consistency of

)3

WG14/N516 X3J11/95-117 Draft 12/21/95

IEEE arithmetic for the complex domain. See [6], [12], [15], and rationale in 6.2.1.5 for
more discussion of imaginary types.

Because of their representation and alignment requirements, imaginary arguments can be
used like real arguments for £printf and £scanf.

The underlying implementation of the complex types is Cartesian, rather than polar, for
overall efficiency and consistency with other programming languages. The implementation
is expliciy stated so that characteristics and behaviors can be defined simply and
unambiguously.

An alternative would have been to introduce six types, flocat_camplex, flocat_imaginary,
double_complex, etc., which would have better suited implementation as a C++ library.
However, it would not have fit C so well, and the draft C++ standard uses template
designations for complex classes so that typedefs would be required for porting between C
and C++ anyway.]

In the last sentence of the first inserted paragraph above, foomote “imaginary unit”
with:

The imaginary unit is a number i such that i times i equals -1.

After the first sentence in the thirteenth paragraph (starting “The type char, ...”), insert
the sentence:

The integral and real floating types are collectively called the real types.

In the last sentence in the thirteenth paragraph replace “floating types” with “real
floating types ”.

6.2.1.3 Floating and integral
Replace all occurrences (including in the title) of “floating” with “real floating ”.
6.2.1.4 Floating types
In the title, replace “Floating” with “Real floating ”.
6.2.1 Arithmetic operands
After subclause 6.2.1.4, add these subclauses, and renumber 6.2.1.5:
6.2.1.5 Imaginary types

Conversions among imaginary types follow rules analogous to those for real
floating types.

6.2.1.6 Real and imaginary

When a value of imaginary type is converted to a real type, the result is a
positive zero or an unsigned zero.

When a value of real type is converted to an imaginary type, the result is a
positive zero or an unsigned zero.

2 Complex Arithmetic—C9X Edits

A5y

Draft 12/21/95 WG14/N516 X3J11/95-117

6.2.1.7 Complex types

When a value of complex type is converted to another complex type, both the
real and imaginary parts follow the conversion rules for corresponding real types.

6.2.1.8 Real and complex

When a value of real type is converted to a complex type, the real part of the
complex result value is determined by the rules of conversion to the
corresponding real type and the imaginary part of the complex result value is a
positive zero or an unsigned zero.

When a value of complex type is converted to a real type, the imaginary part
of the complex value is discarded and the value of the real part is converted
according to the conversion rules for the corresponding real type.

6.2.1.9 Imaginary and complex

When a value of imaginary type is converted to a complex type, the real part
of the complex result value is a positive zero or an unsigned zero and the
imaginary part of the complex result value is determined by the conversion rules
for corresponding real types.

When a value of complex type is converted to an imaginary type, the real part
of the complex value is discarded and the value of the imaginary part is converted
according to the conversion rules for corresponding real types.

6.2.1.5 Usual arithmetic conversions
Replace the second and third sentence up through the third list item with”

The purpose is to determine a common real type, which is also the real type for
the result. The conversion of a real, imaginary, or complex operand yields a type
that is real, imaginary, or complex, respectively. The result type is real,
imaginary, or complex, as specified for the operator and operand types; a real
result has the common real type; each part of an imaginary or complex result has
the common real type. This pattern is called the usual arithmetic conversions:

First, if either operand has type long double, long double imaginary, Or
long double complex the other operand is converted to long double,
long double imaginary, Or long double complex according as that other
operand is real, imaginary, or complex, respectively.

Otherwise, if either operand has type double, double imaginary, Or
double complex the other operand is converted to double,
double imaginary, Or double complex according as that other operand is
real, imaginary, or complex, respectively.

Otherwise, if either operand has type float, float imaginary, or
float complex the other operand is converted to float, float imaginary,
or float complex according as that other operand is real, imaginary, or
complex, respectively. ‘

Complex Arithmetic—C9X Edits 3

WG14/N516 X3J11/95-117 Draft 12/21/95

Footnote the third sentence of the inserted text above with:

These conversions do not change the kind—real, imaginary, or complex—of an operand. For
example, addition of a double imaginary and a float entails just the conversion of the float
operand to double (and yields a double complex result).

[Automatic conversion of real or imaginary operands to complex would require extra
computation, while producing undesirable results in certain cases involving infinities,
NaNs, and signed zeros. For example, with automatic conversion to complex,

2.0* (3.0 + =) => 2.0+ 0.00) * (3.0 + <)
= (2.0%3.0 - 0.0*c0) + (2.0*co + 0.0%3.0)i
=> NaN + oof

rather than the desired result, 6.0 + o,
Optimizers for implementations with infinities—including all IEEE ones—would not
be able to eliminate the operations with the zero imaginary part of the converted operand.
The following example illustrates the problem pertaining to signed zeros; [6] explains
why it matters. With automatic conversion to complex,

2.0 * (3.0-0.00) => 2.0+ 0.00) * (3.0-0.00)
=> (2.0*3.0 + 0.0%0.0) + (-2.0%0.0 + 0.0*3.0);
= 6.0 + 0.0i

rather than the desired result, 6.0 - 0.0i.

The problems illustrated in the examples above have counterparts for imaginary
operands. The mathematical product 2.0i * (eo + 3.0i) should yield -6.0 + ~i. With
automatic conversion to complex,

2.0i * (o + 3.00) = (0.0 +2.00) * (co+ 3.00)
=> (0.0%c0 - 2.0¥3.0) + (0.0%3.0 + 2.0%*0)i
=> NaN + oof

This also demonstrates the need for imaginary types. Without them, 2.0i would have to be
represented as 0.0 + 2.0/, implying that NaN + i would be the semantically correct
result—regardless of conversion rules. And optimizers for implementations with
infinities—including all IEEE ones—would not be able to eliminate the operations with the
zero real part.

In general, the imaginary types, together with the conversion rules and operator
specifications (below), allow substantially more efficient implementation. For example,
multiplication of a real or imaginary by a complex can be implemented straightforwardly
with two multiplications, instead of four multiplications and two additions.

Some programs are expected to use the imaginary types implicitly in constructions
with the imaginary unit I, such as x + y*I, and not explicitly in declarations. This
suggests making the imaginary types private to the implementation and not available for
explicit program declarations. However, such an approach was rejected as being less in the
open spirit of C, and not much simpler. For the same reasons, the approach of treating
imaginary-ness as an attribute of certain complex expressions, rather than as additional
types, was rejected.

Another approach, put forth in [11], would regard the special values—infinities,
NaNs, and signed zeros—as outside the model. This would allow any behavior when
special values occur, including much that is prescribed by this specification. However, this
approach would not serve the growing majority of implementations, including all IEEE
ones, that support the special values. In order to provide a consistent extension of their
treatment of special cases in real arithmetic, these implementations would require yet
another specification in addition to the one suggested in [11]. On the other hand,
implementations not supporting special values should have little additional trouble
implementing imaginary types as proposed here.

4 Complex Arithmetic—C9X Edits

Draft 12/21/95

WG14/N516 X3J11/95-117

The efficiency benefits of the imaginary types goes beyond what the implementation
provides. In many cases programmers have foregone a programming language’s complex
arithmetic facilities, which, lacking an imaginary type, required contiguous storage of both
real and imaginary parts; programmers could store and manipulate complex values more
efficiently using real arithmetic directly [15]. The imaginary types enable programmers to
exploit the efficiency of the real formats, without having to give up support for complex

arithmetic semantics.]
6.3.5 Multiplicative operators

Append to Semantics the paragraph:

If one operand has real type and the other operand has imaginary type, then
the result has imaginary type. If both operands have imaginary type, then the
result has real type. If any operand has complex type, then the result has complex

type.

[The values of the imaginary and complex types are precisely the values of y *I and
X + y*I, respectively, where x and y are values of the corresponding real floating type and /
is the value of the imaginary constant I. Hence, the following tables, taken from [6],
describe the types and mathematical results of multiplications and divisions involving real,
imaginary, and complex operands. x, y, 4, and v denote real values.

Multiply
y*[X+ y*I
u x*u (y*u)*I (x*u) + (y*u)*I
v¥[(x*v)*I -y*y (-y*v) + (x*v)*I
%1y _ yk
u+ vl (x*u) + (x*v)*] (-y*v) + (y*u)*I gﬁ +);c:3):1

(-x*v/(u*u + v*v))*I

(Y¥ullu*u + v¥v))*I

u Xu (Y/u)*I (x/u) + (Yu)*I
v¥/ (-x/v)*I v (V) + (-x/v)*I
u+ v¥l (x*uw(u*u + v¥v)) + (Y*v/(u*u + v*v)) + ((x*u+y*v)/(u*u+v*v))+

((Y*u-x*v)/(u*u+v*v))*I

For multiplication of two complex operands and division by a complex operand, the usual
mathematical formulas shown in the tables do not address quality concerns about undue
overflow and underflow (particularly for divide) and undesirable results from infinite
operands. Also, certain schemes to handle the over/underflow problems cause surprising
roundoff errors. For implementation guidance, see Annex X.11.1.1, [6], and [9].]

Complex Arithmetic—C9X Edits

Gl

WG14/N516 X3J11/95-117 Draft 12/21/95

6.3.6 Additive operators

Append to Semantics the paragraph:

If one operand has real type and the other operand has imaginary type, then
the result has complex type. If both operands have imaginary type, then the result
has imaginary type. If any operand has complex type, then the result has complex

type.

[The following table, taken from [6], describes the types and results of addition and
subtraction involving real, imaginary, and complex operands. x, y, u, and v denote real

values.
Add/subtract
u xtu +u + y*I ‘ (xtu) + y*I
v x+ v (viv)*I X + (ytv)*I
u + v¥ ll (xtu)+ v¥I +u + (ytv)*I (xtu) + (ytv)*I

Note that some operations can be handled entirely at translation time, without floating-point
arithmetic. Examples include y *I, x + v*I,and] *1.]

6.3.8 Relational operators
In the first bullet in Constraints, replace “arithmetic” with “real”.

[Some mathematical practice would be supported by defining the relational operators for
complex operands so that z1 op z2 would be true if and only if both
real(zl) op real(z2) and also imag(zl) == imag(z2). Believing such use to be
uncommon, the committee voted against including this specification.]

6.3.9 Equality operators

Append to Semantics the paragraph:

Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types
(including imaginary and complex) are equal if and only if the results of their
conversion to the complex type of width determined by the usual arithmetic

conversions are equal.
[Fof example,
0 == -0.0*I
is true, because (1) the usual arithmetic conversions promote the integer 0 to double (to

match the other operand), (2) the values 0.0 and -0.0*/ convert to the double cemplex type
as 0.0 + 0.0*I and 0.0 - 0.0*1, and (3) -0.0 equals 0.0 arithmetically, even if not bitwise.]

6 Complex Arithmetic—C9X Edits
Y

Draft 12/21/95 WG14/N516 X3J11/95-117

5.2.4.2.2 Characteristics of floating types <float.h>

In the second sentence of the paragraph defining FLT_EVAL_METHOD (from FPCE->(C9X),
footnote FLT_EVAL_METHOD with:

The evaluation method determines evaluation formats of expressions involving imaginary and
complex types, as well as real types. For example, if FLT_EVAL_METHOD is 1, then the product of
two £loat complex operands is represented in the double complex format, and its parts are
evaluated to double.

6.3.2.4 Postfix increment and decrement operators

In Constraints replace “scalar” with “real or pointer”.

[Allowing an imaginary or complex operand for increment and decrement operators seems
potentially confusing and not particularly useful.]

6.3.3.1 Prefix increment and decrement operators
In Constraints replace “scalar” with “real or pointer”.
6.5.2 Type specifiers

In Syntax, add to the list of type specifiers:

complex
imaginary

In Constraints, add to the bullet items:

— float complex

— float imaginary

— double complex

— double imaginary

— long double complex, O long complex

— long double imaginary, Or long imaginary

6.5.6 Type definitions

Rework example 1 to use something other than complex, e.g. replace “re” with “ni”,
“4m” with “1o0”, and “complex” with “doubledouble”.

Complex Arithmetic—C9X Edits 7

1571

