Floating-Point Arithmetic—C9X Edits
WG14/N511 X3J11/95-112 (Draft 12/21/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim thomas@taligent.com

This is a proposal for changes to existing parts of the C9X draft document, in order to
incorporate FPCE. The edits refer to C9X Draft 3. (Subsequent C9X drafts are
generally satisfactory for understanding the proposed edits.)

Feature: “Recommended practice’” designation

3 Definitions and conventions
Insert the following definition:

3.xx recommended practice: Sections so entitled contain specification that is
strongly recommended as being in keeping with the intent of the standard, but that
may be impractical for some implementations.

Feature: Expression evaluation methods

5.1.2.3 Program execution

Remove the last sentence of example 3.

5.2.4.2.2 Characteristics of floating types <float.h>
Replace the third paragraph with:

Of the values in the <float.h> header, FLT_EVAL_METHOD and FLT_RADIX
shall be constant expressions suitable for use in #1if preprocessing directives; all
other values need not be constant expressions. All except FLT_EVAL_METHOD,
FLT_RADIX, and FLT_ROUNDS have separate names for all three floating-point
types. The floating-point model representation is provided for all values except
FLT_EVAL_METHOD and FLT_ROUNDS.

After the definition of FLT_ROUNDS add:
The values of operations subject to the usual arithmetic conversions and of
floating constants are evaluated to a format whose range and precision may be

greater than required by the type. The use of evaluation formats is characterized
by the value of PLT_EVAL_METHOD:

23

WG14/N511 X3J11/95-112 Draft 12/21/95

-1 indeterminable
0 evaluate all operations and constants just to the range and precision of the

type

1 evaluate operations and constants of type £1oat and double to the range and
precision of the doubla type, evaluate long double operations and constants
to the range and precision of the 1ong double type

2 evaluate all operations and constants to the range and precision of the

long double type

All other values for PLT_EVAL_METHOD characterize implementation-defined
behavior.

[Well defined expression evaluation is essential for predictable arithmetic. Although
specifying just one method would have facilitated porting code, any one method would
have been unacceptably inefficient on some important architectures. On the other hand,
still other expression evaluation methods are conceivable, for example evaluating £1ocat
operations to £loat format, and all others to 1ong double. The expression evaluation
methods described in this section comprise an intentionally small set with at least one
method that is efficient for any of the existing or anticipated, commercially significant,
floating-point architectures.

Standard C generally defines the semantic type of a floating-point operation to be the widest
type of its operands, but gives explicit license to represent the operation’s result in a format
wider than its type.

Representation of constants in a format commensurate with expression evaluation, not a
traditionally uniform practice, better meets certain expectations than would representation
strictly according to semantic type—for example, 0.1f == 1.0£/10.0f, even if float
operations are evaluated to double or 1ong double. Viewed as translation-time operations
that convert decimal strings to internal floating representations, literal floating constants
naturally follow the method of expression evaluation.

Early drafts for this specification defined a #pragma evaluate which allowed switching
expression evaluation methods between external declarations. This facility was believed to
be without sufficient utility and somewhat error prone. Implementations that support
multiple expression evaluation methods can supply translation options. The evaluation of
FLT_EVAL_METHOD is intended to correctly reflect the expression evaluation method
currently in effect.

In the following description of floating-point architectures, the terms extended, double, and
single apply to both IEEE and non-IEEE systems. Generally, extended is wider than double
which is wider than single.

Extended-based. The arithmetic engine is extended. Source operands can be single,
double, or extended, though generally arithmetic with single and double types is less
efficient, requiring extra conversions. Examples include Intel 80x87, Cyrix 3D87,
Motorola 6888x, and AT&T WE 32x06. The Motorola 88110 and Intel 960 can be used as
extended-based architectures, or alternatively as single/double/extended ones (see below).

Double-based. The arithmetic engine is double. Source operands can be single or
double, though generally arithmetic with the single type is less efficient, requiring extra
conversions. Extended may be available, but implemented in software. Examples include
IBM RISC System/6000, PDP-11 in double mode, CRAY, and CYBER 180. On CRAY
and CYBER, single and double may be the same format. The CYBER provides some
hardware support for extended.

Single/double. These provide orthogonal operations for single and double arithmetic.
Single is typically faster than double. Extended may be available, but implemented in
software. Examples include MIPS, SPARC, HP PA-RISC, Motorola 88100, Intel 860, and

2 Floating-Point Arithmetic—C9X Edits
NVOGEQ vt
CoOnTINGES WITN F QY

7Y

Draft 12/21/95 WG14/N511 X3J11/95-112

systems assembled with Weitek or BIT processors. The MIPS, SPARC, and HP PA-RISC
architectures specify extended, though it is not yet in hardware.

Single/double/extended. These provide orthogonal operations for single, double, and
extended arithmetic. Single is faster than double, which is faster than extended. Examples
include Motorola 88110, Intel 960, IBM S/370, and VAX.

The early C implementations provided just the £1oat and double floating-point types and
evaluated all floating expressions t0 double. Intentional or not, some C programs have
relied on extra precision for their computation with £1oat operands. FLT_EVAL_METHOD
equal 1 is a natural choice for double-based architectures.

Implementations for single/double and single/double/extended architectures may find
FLT_EVAL_METHOD equal 0 compellingly more efficient, despite potential problems of
conformity to expectations based on C’s tradition of wide evaluation.

Even on a single/double or single/double/extended architecture, an implementation
might have PLT_EVAL_METHOD equal 1, for compatibility reasons. Common statements of
the form

£fl1 = £2 op £3; /* where f£f1, f£2, £3 are of type float */

can be done optimally by many such implementations, including all IEEE ones, where
rounding the result to double and then to float is equivalent to rounding to float
directly.

FLT_EVAL_METHOD equal 2 is common on extended-based architectures. Programs that
run under one of the other expression evaluation methods generally run at least as well
when all expressions are evaluated to long double. Most program failures due to extra
precision arise from its inconsistent use (see 5.1.2.3).

“Floating-Point C Extensions” in the X3J11 Numerical C Extensions Technical Report
defined widest-need expression evaluation methods: With widest-need, the evaluation
format for an operation is the widest of the semantic types appearing in a certain enclosing
expression and at least as wide as an implementation-defined minimum evaluation format
(float, double, or long double). More precisely, the evaluation format for an operation
subject to the usual arithmetic conversions, or for an assignment (including the assignment
of function arguments to parameters, but not cast conversions), is propagated to its operands
(or arguments): if an operand is a variable or an operation not subject to the usual
arithmetic conversions it is converted to the evaluation format; if the operand is an
operation subject to the usual arithmetic conversions, or a floating constant, the evaluation
format is imposed recursively. The definition of widest-need is based on a similar scheme
for Fortran presented in [9]. It does not affect integer expression evaluation.

As computer speed and memory size increase, so will the number of problems
attempted and the size of data sets. Thus, the likelihood that a program will suffer serious
roundoff error for some actual data will increase. Wider precision, not for the entire
computation but just for expressions containing certain variables, often will fix the problem,
without unduly affecting performance, and without requiring costly error analysis. With
widest-need, an expression is automatically evaluated to the format of its widest
component. To achieve the same effect without widest-need expression evaluation, the
programmer must add or delete casts and constant suffixes throughout the program.

Widest-need expression evaluation is a particularly attractive compromise for
architectures whose wider formats are significantly slower. It offers the accuracy of wide
evaluation where likely needed and also the speed of narrow evaluation where clearly
intended. Note that casts can be used to inhibit widest-need widening, even within a wide
expression.

This specification does not define widest-need methods because of the scarcity of
prior art. Of course, an implementation could provide widest-need, as prescribed in the
Technical Report, as an optional expression evaluation method.

“Flo.ating-Point C Extensions” in the X3J11 Numerical C Extensions Technical Report
specifies three pragmas granting license for the implementation to represent function return
values, function parameters, and variables in a format wider than their declared type:

Floating-Point Arithmetic—C9X Edits 3

e Ens A SN R M e - St Ry

WG14/N511 X3J11/95-112 Draft 12/21/95

#pragma fp_wide_function_returns on-off-switch
#pragma fp_wide_function_parameters on-off-switch
#pragma fp_wide_variables on-off-switch

#pragma fp_wide_function_returns on—allows floating return values to be
represented in a wider format than (and not narrowed to) the declared type of the function.

#pragma fp_wide_function_parameters on—allows floating parameters to be in a
wider format than (and not narrowed to) the declared type of the formal parameter.

#pragma fp_wide_variables on—allows values of automatic scalar floating
variables to be in a wider format than their declared type.

If the on-off-switch is of £ then widening is disallowed. Standard C compatibility
requires that the default state for the pragmas be off. ;

These pragmas can occur outside external declarations, and allow (if on) or disallow
(if off) widening from their occurrence until another pragma instructing otherwise is
encountered, or until the end of the translation unit. The effect of these pragmas appearing
inside an external declaration is undefined. Widening is consistent throughout the effect of
an enabling pragma: either all instances of the returns, parameters, or variables are widened
or none are; the representation format for a parameter or variable does not vary. However,
which, if any, of these pragmas actually cause widening is implementation-defined. The
fp_wide_function_returns and fp_wide_function_parameters pragmas may affect
function definitions or calls but not prototypes.

When the implementation detects an address or sizeof operator of a widened
parameter or variable it emits a translation-time warning; execution-time behavior is then
undefined.

This mechanism facilitates generating efficient code for extended-based or double-
based architectures. The typedefs £loat_t and double_t allow finer application than do
the pragmas, but require more extensive changes to existing code.

The function writer who decides that narrowing arguments and returns to their
semantic type is less desirable than efficiency can write the function under the effect of
enabling £p_wide_function_parameters and £p_wide_function_returns pragmas.
Similarly the programmer who uses the function can apply these pragmas to the call site. In
either case widening (not narrowing) may or may not occur. These pragmas do not demand
widening, nor even recommend it, but merely declare that widening would be acceptable. It
is up to the implementation to determine whether widening would be both safe and also
more efficient. For example, implementations that pass different type (floating) parameters
in different formats can not widen parameters of external functions safely.

Even among implementations which respond to the pragmas, the location in the source
code where the pragmas must be placed to be effective may vary. For example, an
implementation might perform requisite narrowing of parameters at the call site, in which
case the call would have to be under the effect of an enabling
fp_wide_function parameters pragma; or, it might narrow within the function, in which
case the function definition would have to be under the effect of the pragma.

The pragmas do not affect function prototypes. Doing so might have benefited
implementations that pass different floating type arguments and returns in different ways.
However, maintaining consistency between the prototype and implementation seemed
particularly error prone. A language extension to assure the consistency seemed unjustified.
The £1oat_t and double_t type definitions are available for such prototypes.

Casts are not affected by any of these pragmas, nor by wide expression evaluation, so
can be used portably to force narrowing.

Another approach would have been to introduce register as a function qualifier that
would have allowed widening of both the parameters and the return value. This would have
been inconsistent with the register storage class specifier, which is unrelated to widening,
and would not have helped with variables.

This specification does not include £p_wide pragmas, nor macro equivalents, because
their use and meaning would vary so much from one implementation to the next. Of course
and implementation could provide them as an extension.]

4 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

Feature: Dynamic FLT_ROUNDS

5.2.4.2.2 Characteristics of floating types <float.h>
In the fourth paragraph, add the following footnote to “rounding mode”:

Evaluation of PLT_ROUNDS correctly reflects any execution-time change of rounding mode through
the function fesetround in <fenv.h>.

Feature: Hexadecimal floating constants

3. Definitions and conventions
Add the following definition:

3.x correctly rounded result: A representation in the result format that is
nearest in value, subject to the effective rounding mode, to what the result would
be given unlimited range and precision.

6.1.3.1 Floating constants
Replace the syntax with the following syntax:
Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
0x hexadecimal-fractional-constant binary-exponent-part floating-suffixopt
0x hexadecimal-fractional-constant binary-exponent-part floating-suffixopt
0x hexadecimal-digit-sequence binary-exponent-part floating-suffixopt
ox hexadecimal-digit-sequence binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopr . digit-sequence
digit-sequence

exponent-part:

e signopt digit-sequence
E signopy digit-sequence

Floating-Point Arithmetic—C9X Edits 5

y A T Y

@m‘.‘i

WG14/N511 X3J11/95-112 Draft 12/21/95

sign: one of
+ B

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant: :
hexadecimal-digit-sequencegpt . hexadecimal-digit-sequence
hexadecimal-digit-sequence

binary-exponent-part:
p Signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e £
A B C D E F

floating-suffix: one of
A SN L

In the third sentence of the Description, replace “e or E” with “e, E, p, O P”.
Replace the second clause of the last sentence of the Description with:

for decimal floating constants, either the period or the exponent part shall be
present.

Replace the first paragraph of the Semantics with:

The significand part is interpreted as a (decimal or hexadecimal) rational
number; the digit sequence in the exponent part is interpreted as a decimal
integer. For decimal floating constants, the exponent indicates the power of 10 by
which the significand part is to be scaled. For hexadecimal floating constants the
exponent indicates the power of 2 by which the significand part is to be scaled.
For decimal floating constants, and also for hexadecimal floating constants when
FLT_RADIX is not a power of 2, if the scaled value is in the range of representable
values (for its type) the result is either the nearest representable value, or the
larger or smaller representable value immediately adjacent to the nearest
representable value, chosen in an implementation-defined manner. For
hexadecimal floating constants, if PLT_RADIX is a power of 2 and the scaled value
is in the range of representable values (for its type), then the result of a
hexadecimal floating constant is correctly rounded.

Recommend practice

The implementation emits a non-fatal diagnostic if a hexadecimal constant
cannot be represented exactly in its evaluation format.

6 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

6.1.3.2 Integer constants

Delete the hexadecimal-digit syntax (now in 6.1.3.1).
6.1.8 Preprocessing numbers

Before the last line of the Syntax insert:

pp-number p sign
pp-number P sign

[Hexadecimal more clearly expresses the significance of floating constants.

The binary-exponent part is required to avoid ambiguity from an £ suffix (being
mistaken as a hexadecimal digit).

Unlike integers, floating values cannot all be represented directly by hexadecimal
constant syntax. A sign can be prefixed for negative numbers and -0. Infinities might be
produced by hexadecimal constants that overflow. NaNs require some other mechanism.
The character sequence 0x1.FFFFFEp128f might appear to be an IEEE single-format NaN,
which is characterized by an unbiased exponent of 128 and a nonzero significand;
however, this character sequence overflows to an infinity in the single format.

An alternate approach might have been to represent bit patterns. For example

#define FLT_MAX 0x.7F7FFFFF

This would have allowed representation of NaNs and infinities. However, numerical values
would have been more obscure owing to bias in the exponent and the implicit significand
bit. NaN representations would not have been portable—even the determination of IEEE
quiet NaN vs signaling NaN is implementation-defined. NaNs and infinities are provided
through macros in 7.x.

Note that constants of 1ong double type are not fully portable, even among IEEE
implementations. See rationale in Annex X.2.

The straightforward approach of denoting octal constants by a 0 prefix would have been
inconsistent with allowing a leading 0 digit—a moot point as the need for octal floating
constants was deemed insufficient.]

How about using hexadecimal constants in the examples in 5.2.4.2.2,
instead of, or in addition to, the decimal ones?

7.10.1.4 The strtod function
Replace the first sentence of the second paragraph of the Description with:

The expected form of the subject sequence is an optional plus or minus sign, then
one of the following:

* a nonempty sequence of decimal digits optionally containing a decimal-point
character, then an optional exponent part as defined in 6.1.3.1;

* a 0x or ox, then a nonempty sequence of hexadecimal digits optionally
containing a decimal-point character, then an optional binary-exponent part,
where either the decimal-point character or the binary-exponent part is
present;

Floating-Point Arithmetic—C9X Edits 7

-

WG14/N511 X3J11/95-112 Draft 12/21/95

but no floating suffix.
In the first sentence of the third paragraph of the Description, replace “if neither an
exponent part nor a decimal-point character appears” with “if neither an exponent part, a
binary-exponent part, nor a decimal-point character appears”.
After the fourth paragraph of the Description insert the paragraph:

If the subject sequence has the hexadecimal form and PLT_RADIX is a power
of 2, then the value resulting from the conversion is correctly rounded.

After the Description insert:
Recommended practice
If the subject sequence has the hexadecimal form and PLT_RADIX is not a
power of 2, then the result is one of the two numbers in the appropriate internal
format that are adjacent to the hexadecimal floating source value, with the extra
stipulation that the error have a correct sign for the current rounding direction.
7.16.4.1.1 The wcstod function
Replace the first sentence of the second paragraph of the Description with:

The expected form of the subject sequence is an optional plus or minus sign, then
one of the following:

* anonempty sequence of decimal digits optionally containing a decimal-point
wide character, then an optional exponent part as defined for the
corresponding single-byte characters in subclause 6.1.3.1;

* a 0x or 0x, then a nonempty sequence of hexadecimal digits optionally
containing a decimal-point wide character, then an optional binary-exponent
part, where either the decimal-point character or the binary-exponent part is
present;

but no floating suffix.
In the first sentence of the third paragraph of the Description, replace “if neither an
exponent part nor a decimal-point wide character appears” with “if neither an exponent
part, a binary-exponent part, nor a decimal-point wide character appears”.
After the fourth paragraph of the Description insert the paragraph:

If the subject sequence has the hexadecimal form and FLT_RADIX is a power
of 2, then the value resulting from the conversion is correctly rounded.

After the Description insert:
Recommended practice
If the subject sequence has the hexadecimal form and PLT_RADIX is not a

power of 2, then the result is one of the two numbers in the appropriate internal

8 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

format that are adjacent to the hexadecimal floating source value, with the extra
stipulation that the error have a correct sign for the current rounding direction.

7.9.6.1 The fprintf function

In the third bullet of the second paragraph of the Description, replace “e, E,” with “a, A

”

e, E,

In the fourth bullet of the second paragraph of the Description, replace “e, E,” with “a, A
e, E,".

In the # ﬂag specification in the fourth paragraph of the Description, replace “e, E,” with
“a, A, e, E

In the 0 ﬂag specification in the fourth paragraph of the Description, replace “e, E,” with
" A, e, E, .

After the g, G conversion specifier and its meaning in the fifth paragraph, insert:

a,A The double argument is converted in the style [-]Oxh.hhhhp+d. The number
of hexadecimal digits & after the decimal-point character is equal to the
precision; if the precision is missing and FLT_RADIX is a power of 2, then
the precision is sufficient for an exact representation of the value; if the
precision is missing and FLT_RADIX is not a power of 2, then the precision is
sufficient to distinguish values of type double, except that trailing zeros
may be omitted. The hexadecimal digit to the left of the decimal-point
character is nonzero for normalized floating-point numbers and is otherwise
unspecified; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The letters abcdef are used for a
conversion and the letters ABcDEF for A conversion. The a conversion
specifier will produce a number with x and p and the a conversion specifier
will produce a number with x and p. The exponent always contains at least
one digit, and only as many more digits as necessary to represent the
decimal exponent of 2. If the value is zero, the exponent is zero.

In the second sentence of the preceding inserted text, footnote the word “distinguish”
with.

The precision p is sufficient to distinguish values of the source type if

-1 n
16P >b

where b is FLT_RADIX and 7 is the number of base-b digits in the significand of the source type. A
smaller p might suffice depending on the implementation’s scheme for determining the digit to the
left of the decimal-point character.

In the third sentence of the preceding inserted text, footnote the word “implementation”
with:

Binary implementations can choose the hexadecimal digit to the left of the decimal-point character
so that subsequent digits align to nibble boundaries.

Floating-Point Arithmetic—C9X Edits 9

WG14/N511 X3J11/95-112 Draft 12/21/95

At the end of the Description append the paragraphs:

For a and A conversions, if PLT_RADIX is a power of 2, the value is correctly
rounded to a hexadecimal floating number with the given precision.

Recommended practice

If PLT_RADIX is not a power of 2, the result is one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation
that the error have a correct sign for the current rounding direction.

[To illustrate alignment to nibble (4-bit) boundaries, the next value greater than one in the
common IEEE 754 80-bit extended format should be

0x8.000000000000001p-3
The next value less than one in IEEE 754 double should be
Ox1.ffffEfffEffffp-1

Note that if the precision is missing, trailing zeros may be omitted. For example, the value
positive zero might be

0x0.p+0

The more suggestive conversion specifiers for hexadecimal formatting, namely x and h,
were unavailable. Since h was taken H was ruled out in favor of a lower/upper case option.
Possibilities other than aincluded: b § k m @ r t v w y z. The optional h to indicate
hexadecimal floating, as in %he, was deemed a less natural fit with the established scheme
for specifiers and options.

The decimal-point character is defined in 7.1.1. Radix-point character would be a better
term.

Use of the A format specifier constitutes a minor extension to ISO/IEC 9899 : 1990 (E)
which does not reserve it.]

7.16.2.1 The fwprintf function

In the third bullet of the third paragraph of the Description, replace “e, E,” with “a, A, e,
E,’.

In the fourth bullet of the third paragraph of the Description, replace “s, E,” with “a, , e,
E,”.

In the # flag specification in the fifth paragraph of the Description, replace “e, E,” with

(43 b4
a,A,e,E, .

In the 0 flag specification in the fifth paragraph of the Description, replace “e, E,” with
ua’ A e, E,”. 3

After the g, G conversion specifier and its meaning in the sixth paragraph, insert:
a,A The double argument is converted in the style /[-]Oxh.hhhhp#d. The number

of hexadecimal digits h after the decimal-point wide character is equal to the
precision; if the precision is missing and PLT_rapIX is a power of 2, then

10 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

the precision is sufficient for an exact representation of the value; if the
precision is missing and PLT_RADIX is not a power of 2, then the precision is
sufficient to distinguish values of type double, except that trailing zeros may
be omitted. The hexadecimal digit to the left of the decimal-point wide
character is nonzero for normal values and is otherwise chosen by the
implementation; if the precision is zero and the # flag is not specified, no
decimal-point wide character appears. The letters abcde£ are used for a
conversion and the letters ABCDEF for A conversion. The a conversion
specifier will produce a number with x and p and the A conversion specifier
will produce a number with x and . The exponent always contains at least
one digit, and only as many more digits as necessary to represent the
decimal exponent of 2.

In the second sentence of the preceding inserted text, footnote the word “distinguish”
with:

The precision p is sufficient to distinguish values of the source type if
p-1 n
16 b
where b is FLT_RADIX and 7 is the number of base-b digits in the significand of the source type. A
smaller p might suffice depending on the implementation’s scheme for determining the digit to the
left of the decimal-point wide character.

In the third sentence of the preceding inserted text, footnote the word “implementation”
with:

Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide
character so that subsequent digits align to nibble (4-bit) boundaries.

At the end of the Description append the paragraphs:

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly
rounded to a hexadecimal floating number with the given precision.

Recommended practice
If PLT_RADIX is not a power of 2, the result is one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation
that the error have a correct sign for the current rounding direction.
7.9.5.8 The £scanf function

In the third bullet of the second paragraph of the Description, replace “e, £, and ¢g” with
“a, @, £,and g”’.

In the Description paragraph listing the conversion specifiers, replace “a, £, g’ with
ua' e, f, g”.

In the fourth to last paragraph in the Description, replace “specifiers E,” with “specifiers
A, E,”. Inthe same paragraph, replace “respectively, e,” with “respectively, a, e,”.

Floating-Point Arithmetic—C9X Edits 11

WG14/N511 X3J11/95-112 Draft 12/21/95

7.16.2.2 The fwscanf function

In the third bullet of the second paragraph of the Description, replace “e, £, and g” with
“a, @, £,and g”’

In the Description paragraph listing the conversion specifiers, replace “e, £, g” with
“a, e,38, ko

In the third to last paragraph in the Description, replace “specifiers E,” with “specifiers
A, E,”. In the same paragraph, replace “respectively, e,” with “respectively, a, e,”.

Feature: Output of wide exponents

7.9.6.1 The fprintf function

In the e item in the list of conversion specifiers and their meanings, in the next to last
sentence, replace “‘at least two digits” with “at least two digits, and only as many more
digits as necessary to represent the exponent”.

7.16.2.1 The fwprintf function

In the e item in the list of conversion specifiers and their meanings, in the next to last

sentence, replace “at least two digits” with “at least two digits, and only as many more
digits as necessary to represent the exponent”.

Feature: Support for infinities, NaNs, and -0

6.1.2.5 Types

To the sixth paragraph append :
Values of floating types might include infinities and NaNs, as well as floating-
point numbers. A NaN is an encoding signifying Not-a-Number. A quiet NaN
propagates through almost every arithmetic operation without raising an
exception. A signaling NaN generally raises an exception when occurring as an
arithmetic operand.

7.10.1.4 The strtod function

In the first sentence of the second paragraph of the Description, as amended by the
change above for hexadecimal floating constants, after the last bullet, insert:

* one of INF or INFINITY, ignoring case

e one of NAN or NAN (n-char-sequenceopy), ignoring case in the NAN part, where

12 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

In the first sentence of the third paragraph of the Description replace “expected form”
with “expected form for a floating-point number”.

After the first sentence of the third paragraph of the Description insert:

A character sequence INF or INFINITY is interpreted as an infinity, if
representable in the double type, else like a floating constant that is too large for
the range of double. A character sequence NAN or NAN (n-char-sequencegpy) is
interpreted as a quiet NaN, if supported in the double type, else like a subject
sequence part that does not have the expected form; the meaning of the n-char
sequences is implementation-defined.

In the preceding insertion, footnote “implementation-defined” with:

An implementation may use the n-char-sequence to determine extra information to be represented
in the NaN’s significand.

In the next to last sentence of the third paragraph of the Description, footnote “negated”
with:

The strtod function honors the sign of zero if the arithmetic supports signed zeros.

[So much is implementation-defined because so little is portable. Attaching meaning to
NaN significands is problematic, even for one implementation, even an IEEE one. For
example, the IEEE standard does not specify the effect of format conversions on NaN
significands—conversions, perhaps generated by the compiler, may alter NaN significands
in obscure ways.

Requiring a sign for NaN or infinity input was considered as a way of minimizing the
chance of mistakenly accepting nonnumeric input. The need for this was deemed
insufficient, partly on the basis of prior art.

For simplicity, the infinity and NaN representations were provided through straightforward
extensions, rather than through a new locale. Note also that Standard C locale categories do
not affect the representations of infinities and NaNs.

A proposal that strtod be allowed to return a NaN for invalid numeric input, as
recommended by IEEE standard 854, was withdrawn because of the incompatibility with
the C standard ISO/IEC 9899 : 1990 (E), which demands that strtod return 0 for invalid
numeric input.]

7.16.4.1.1 The wcstod function

In the first sentence of the second paragraph of the Description, as amended by the
change above for hexadecimal floating constants, after the last bullet, insert:

* one of INF, INFINITY, or any wide string equivalent except for case

Floating-Point Arithmetic—C9X Edits 13

WG14/N511 X3J11/95-112 Draft 12/21/95

* one of NAN, or NAN(n-wchar-sequencegpy), or any wide string equivalent
except for case in the NAN part, where
n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit
In the first sentence of the third paragraph of the Description replace “expected form”
with “expected form for a floating-point number”.

After the first sentence of the third paragraph of the Description insert:
A wide character sequence INF or INFINITY is interpreted as an infinity, if
representable in the double type, else like a floating constant that is too large for
the range of double. A wide character sequence NAN or NAN (n-wchar-
sequencegpy) is interpreted as a quiet NaN, if supported in the double type, else
like a subject sequence part that does not have the expected form; the meaning of
the n-wchar sequences is implementation-defined.

In the preceding insertion, footnote “implementation-defined” with:

An implementation may use the n-wchar-sequence to determine extra information to be
represented in the NaN’s significand.

In the next to last sentence of the third paragraph of the Description, footnote “negated”
with:

The westod function honors the sign of zero if the arithmetic supports signed zeros.
7.9.6.1 The fprintf function

In the third bullet of the second paragraph of the Description, replace “E, and £” with “E,
£,and F”.

In the fourth bullet of the second paragraph of the Description, replace “E, £,” with “E, £,
F,”’.

Foomote the + flag specification in the fourth paragraph of the Description with:
The results of all floating conversions of a negative zero include a minus sign.

In the # flag specification in the fourth paragraph of the Description, replace “E, £,” with
“E, f, F,”.

In the 0 flag specification in the fourth paragraph of the Description, replace “E, £,” with
“E, f, F,”.

In the list of conversion specifiers and their meanings, change the “t” bullet to “¢, ¥”.

In the fitem in the list of conversion specifiers and their meanings, replace “double
argument” with “double argument representing a floating-point number”.

14 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

At the end of the f item in the list of conversion specifiers and their meanings, append the
paragraph:

A double argument representing an infinity is converted in one of the styles
[-]4inf or [-]infinity—which style is implementation-defined. A double
argument representing a NaN is converted in one of the styles [-nan or
[- Inan (n-char-sequence) —which style, and the meaning of any n-char-
sequence, is implementation-defined. The F conversion specifier will produce an
INF, INFINITY, Or NAN instead of an inf, infinity, Or nan.

Footnote the preceding inserted paragraph with:

When applied to infinite and NaN values, the -, +, and space flag characters have their usual
meaning; the # and 0 flag characters have no effect .

In the e item in the list of conversion specifiers and their meanings, replace “double
argument” with “double argument representing a floating-point number”.

At the end of the e item in the list of conversion specifiers and their meanings, append the
sentence:

A double argument representing an infinity or a NaN is converted in the style of
an £ or F conversion specifier.

In the newly inserted a item in the list of conversion specifiers and their meanings,
replace “double argument” with “double argument representing a floating-point
number”.

In the newly inserted a item in the list of conversion specifiers and their meanings,
append the sentence:

A double argument representing an infinity or a NaN is converted in the style of
an £ or F conversion specifier.

In the g item in the list of conversion specifiers and their meanings, replace “style E” with
“style E or P”.

[See the rationale above for strtod.

Use of the P format specifier constitutes a minor extension to ISO/IEC 9899 : 1990 (E)
which does not reserve it.]

7.16.2.1 The fwprintf function

In the third bullet of the third paragraph of the Description, replace “E, and £” with “E, £,
and ¥”.

In the fourth bullet of the third paragraph of the Description, replace “E, £,” with “E, £,
F,”’.

Foomote the + flag specification in the fifth paragraph of the Description with:

The results of all floating conversions of a negative zero include a minus sign.

Floating-Point Arithmetic—C9X Edits 15

WG14/N511 X3J11/95-112 Draft 12/21/95

In the # flag specification in the fifth paragraph of the Description, replace “E, £,” with
“E, f, F,”.

In the 0 flag specification in the fifth paragraph of the Description, replace “E, £,” with
“E, f, F,”.

In the list of conversion specifiers and their meanings, change the “£” bullet to “t, ¥”.

In the f item in the list of conversion specifiers and their meanings, replace “double
argument” with “double argument representing a floating-point number”.

At the end of the f item in the list of conversion specifiers and their meanings, append the
paragraph: :

A double argument representing an infinity is converted in one of the styles
[-]inf or [-]infinity—which style is implementation-defined. A double
argument representing a NaN is converted in one of the styles [-Jnan or
[-]nan (n-wchar-sequence) —which style, and the meaning of any n-wchar-
sequence, is implementation-defined. The F conversion specifier will produce an
INF, INFINITY, Or NAN instead of an inf, infinity, Or nan.

Footnote the preceding inserted paragraph with:

When applied to infinite and NaN values, the -, +, and space flag wide characters have their usual
meaning; the # and 0 flag wide characters have no effect .

In the e item in the list of conversion specifiers and their meanings, replace “double
argument” with “double argument representing a floating-point number”.

At the end of the e item in the list of conversion specifiers and their meanings, append the
sentence:

A double argument representing an infinity or a NaN is converted in the style of
an £ or F conversion specifier.

In the newly inserted a item in the list of conversion specifiers and their meanings,
replace “double argument” with “double argument representing a floating-point
number”.

In the newly inserted a item in the list of conversion specifiers and their meanings,
append the sentence:

A double argument representing an infinity or a NaN is converted in the style of
an £ or F conversion specifier.

In the g item in the list of conversion specifiers and their meanings, replace “style E” with
“style E or F”’. :

16 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

Feature: Strings -> float, long double

7.10.1 String conversion functions

Add two new subclauses and renumber others accordingly (note that HUGE_VALF and
HUGE_VALL are defined in <math.h>):

7.10.1.4 The strtof function
Synopsis

#include <stdlib.h>
float strtof(const char *nptr, char **endptr);

Description

The strtof function is similar to the strtod function, except the returned value
has type £loat and plus or minus HUGE_VALF is returned for values outside the
range.

7.10.1.7 The strtold function
Synopsis

#include <stdlib.h>
long double strtold(const char *nptr, char **endptr):;
Description

The strtold function is similar to the strtod function, except the returned value
has type long double and plus or minus HUGE_VALL is returned for values
outside the range.

The names strtold and wcstold match strtol and wcstol in the first six
characters. Also the <fenv.h> functions fesetenv and fesetexcept match in
the first six characters. An issue?

7.16.4.1 Wide-string numeric conversion functions

Add two new subclauses and renumber others accordingly (note that HUGE_VALF and
HUGE_VALL are defined in <math.h>):

7.16.4.1.x The wecstof function
Synopsis

#include <wchar.h>
float wcstof(const wchar_t *nptr, wchar_t **endptr):;

Floating-Point Arithmetic—C9X Edits 17

WG14/N511 X3J11/95-112 Draft 12/21/95

Description

The westof function is similar to the westod function, except the returned value
has type £loat and plus or minus EUGE_VALF is returned for values outside the
range.

7.16.4.1.x The wcstold function
Synopsis

#include <wchar.h>
long double wcstold(const wchar_t *nptr, wchar_ t **endptr);

Description
The westold function is similar to the westod function, except the returned value

‘has type long double and plus or minus HUGE_VALL is returned for values
outside the range.

Feature: FP environment management

5.1.2.3 Program execution

In the first sentence of the second paragraph, footnote “side effects” with:
The ANSI/IEEE floating-point standard 754 (IEC 559) requires certain status flags and control
modes, with user access. Floating-point operations implicitly set the status flags; modes affect
result values of floating-point operations. Implementations that support such floating-point state
will need to regard changes to it as side effects—see Annex X for details. The floating-point

environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementation in other cases.

Feature: Correctly rounded binary-decimal conversion

6.1.3.1 Floating constants
Insert after semantics (as revised above) the paragraph:
Recommended practice
The translation-time conversion of floating constants matches the execution-
time conversion of character strings by library functions, such as strtod, given

matching inputs suitable for both conversions, the same result format, and default
execution-time rounding.

18 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

Footnote the preceding paragraph with:

The specification for the library functions recommends more accurate conversion than required for
floating constants. See 7.10.1.4.

7.10.1.4 The strtod function
After the Description insert the paragraph:
Recommended practice

If the subject sequence has the decimal form and at most DECIMAL_DIG
(defined in <math.h>) significant digits, then the value resulting from the
conversion is correctly rounded. If the subject sequence D has the decimal form
and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having DECIMAL_DIG significant digits,
such that the values of L, D, and U satisfy L <D < U. The result of conversion is
one of the (equal or adjacent) values that would be obtained by correctly rounding
L and U according to the current rounding direction, with the extra stipulation that
the error with respect to D has a correct sign for the current rounding direction.

Footnote the preceding inserted paragraph with:

DECIMAL_DIG, defined in <«math.h>, is recommended to be sufficiently large that L and U will
usually round to the same internal floating value, but if not will round to adjacent values.

7.16.4.1.1 The wcstod function
After the Description insert the paragraph:
Recommended practice

If the subject sequence has the decimal form and at most DECIMAL_DIG
(defined in <math.h>) significant digits, then the value resulting from the
conversion is correctly rounded. If the subject sequence D has the decimal form
and more than DECIMAL_DIG significant digits, consider the two bounding,
adjacent decimal strings L and U, both having pEcIMAL D16 significant digits,
such that the values of L, D, and U satisfy L <D < U. The result of conversion is
one of the (equal or adjacent) values that would be obtained by correctly rounding
L and U according to the current rounding direction, with the extra stipulation that
the error with respect to D has a correct sign for the current rounding direction.

Footnote the preceding inserted paragraph with:

DECIMAL_DIG, defined in <math.h>, is recommended to be sufficiently large that L and U will
usually round to the same internal floating value, but if not will round to adjacent values.

7.9.6.1 The fprintf function

At the end of the Description insert the paragraph:

Floating-Point Arithmetic—C9X Edits 19

WG14/N511 X3J11/95-112 Draft 12/21/95

Recommended practice

For e, E, £, P, g, and G conversions, if the number of significant decimal digits
is at most DECIMAL_DIG, then the result is correctly rounded. If the number of
significant decimal digits is more than DECIMAL_DIG but the source value is
exactly representable with pEcIMAL_DIG digits, then the result is an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings L < U, both having pECIMAL_DIG significant digits; the
value of the result decimal string D satisfies L <D < U, with the extra stipulation
that the error have a correct sign for the current rounding direction.

In the first sentence of the preceding paragraph, footnote “correctly rounded” with:

For binary-to-decimal conversion, the result format's values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and
in the case of fixed-point conversion by the source value as well.

7.16.2.1 The twprintf function
At the end of the Description insert the paragraph:
Recommended practice

For e, E, £, P, g, and G conversions, if the number of significant decimal digits
is at most DECIMAL_DIG, then the result is correctly rounded. If the number of
significant decimal digits is more than pEcIMAL_DIG but the source value is
exactly representable with pecIMAL_p1G digits, then the result is an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings L < U, both having bECIMAL_DIG significant digits; the
value of the result decimal string D satisfies L <D < U, with the extra stipulation
that the error have a correct sign for the current rounding direction.

In the first sentence of the preceding paragraph, footnote “correctly rounded” with:

For binary-to-decimal conversion, the result format's values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and
in the case of fixed-point conversion by the source value as well.

Feature: Contraction control

6.3 Expressions
Append to the subclause the paragraph :

A floating expression may be contracted, that is, evaluated as though it were
an atomic operation, thereby omitting rounding errors implied by the source code
and the expression evaluation method. The £p_contract macros in <math.h>
provide a way to disallow contracted expressions. Otherwise, whether and how
expressions are contracted is implementation defined.

20 Floating-Point Arithmetic—C9X Edits

Draft 12/21/95 WG14/N511 X3J11/95-112

Footnote the first sentence in the preceding new paragraph with:

A contracted expression might also omit side effects such as the raising of floating-point exception
flags.

Foomote the preceding new paragraph with:

This license is specifically intended to allow implementations to exploit fast machine instructions
that combine multiple C operators. As contractions potentially undermine predictability, and can
even decrease accuracy for containing expressions, their use must be well-defined and clearly
documented.

[An implementation that is able to multiply two double operands and produce a float
result in just one machine instruction might contract the multiplication and assignment in:

float £;
double 41, d42;

£ =41 * 42;

Other examples of potential contractions include:

compound assignments +=, -=, €tC.
ternary add X +Y + z
multiply-add xX*y+z

A contraction might omit a rounding error that would have fortuitously improved
accuracy, so that the more accurate evaluation of a subexpression might result in a less
accurate evaluation of the containing expression.

Contractions can lead to subtle anomalies even while increasing overall accuracy. The
value of expressions like a * b + ¢ * 4 will depend on how the translator uses a
contracted multiply-add. Knowing that the implementation contracts multiply-adds, the
programmer should be able to control results (and reap the benefits of contraction) through
simple coding measures, for example parenthesizing (a * b) + ¢ * d. However, the
Intel 860’s multiply-add is slightly more problematic. Since it keeps a wide but partial
product, a * b + z may differ fromc¢ * 4 + z even though the exact mathematical
productsa * band ¢ * 4 are equal; the result depends not just on the mathematical result
and the format, as ordinarily expected for error analysis, but also on the particular values of
the operands.

The extra accuracy of the IBM RISC System/6000 and HP PA8000’s fused multiply-
add, which produces a result with just one rounding, can be exploited for simpler and faster
codes. See [19] for details.]

Feature: Optimization guidance

5.1.2.3 Program execution
Add an example after current example 3:
Implementations employing wide registers must take care to honor appropriate
semantics. Values must be independent of whether they are represented in a

register or in memory. For example, an implicit spilling of a register must not
alter the value. Also, an explicit store and load must round to the precision of the

Floating-Point Arithmetic—C9X Edits 21

WG14/N511 X3J11/95-112 Draft 12/21/95

storage type. In particular, casts and assignments must perform their specified
conversion: for the fragment

double 41, d42;

float £;

dl = £ = expression;

d2 = (float)expression;

the values assigned to 41 and 42 must have been converted to float.

Add an example after current example 4

Rearrangement for floating-point expressions is restricted because of
limitations in precision as well as range. The implementation cannot generally
apply the mathematical associative laws for addition or multiplication, nor the
distributive law, because of roundoff error, even in the absence of overflow and
underflow. Likewise, the implementation cannot generally replace decimal
constants in order to rearrange expressions. In the following fragment,
rearrangements suggested by mathematical laws are not valid. See Annex X.8.

double x, vy, Z;

Y PN

xX=(x *y) * z; /* not equivalent to x *=y * z; */

zZ = (X -Y) +Y¥; /* not equivalent to z = x; */

Z =X+ X *y; /* not equivalent to z = x * (1.0 + y); */
y=x/ 5.0; /* not equivalent toy = x * 0.2; */

Feature: Optional IEEE support

6.8.8 Predefined macro names
After the first paragraph insert the paragraph:

The following macro name is defined if and only if the implementation
conforms to Appendix X:

_ 1EeEE_FP__ The decimal constant 1.

22 Floating-Point Arithmetic—C9X Edits
19

