N 500

The restrict qualifier should not be a full type qualifier

Jutta Degener

DIN

ABSTRACT

In N488, Bill Homer proposes a restrict qualifier that lets programmers com-
municate aliasing properties of their code to the implementation. N448 suggests making
restrict a type qualifier. similar to volatile, but applied to the pointer itself, not
to the non-aliased data. C limits the conversions between qualified and unqualified types.
In case of restrict, these limitations make no sensc. A restrict-qualified type
should be compatible with its not restrict-qualified counterpart.

Introduction

A restricted pointer is one that. in the scope of the identifier used to refer to it, provides unaliased
access to the data it points to. For example, the restricted pointer definition for memcpy

void *

memcpy (void * restrict sl1l, const void * restrict s2, size_t n)

{

}

promises that no user will call memcpy so that the same piece of storage will be accessed through both
sl and s2 within it (or through any other pointer that is not based on s1 or s2,respectively).

Differences between volatile and restrict.

In Bill Homer’s proposal, restrict has the same status as volatile; both are type qualifiers.
When casting pointers to qualified types, the C standard permits adding qualifiers and forbids removing
them. This originates with const. and still makes a certain amount of sense with volatile: but with
restrict, the model breaks down.

Fundamentally, this is because volatile makes demands where restrict gives permission to
the C implementation. It is safe to demand more than one needs (hence adding volatile and const
qualifiers is legal); it is dangerous to demand less (hence stripping them requires an explicit cast.)

Consider a piece of code that communicates with the outside world through two arrays of
volatile- or restrict-qualified pointers, volatile_matrixand restrict_matrix.

char * volatile * volatile matrix;
char * restrict * restrict_matrix;

What are the constraints imposed by these qualifications, and what the permissons granted?

The restrict qualifier places a (not automatically verifiable) constraint on the user of an inter-
face: “Do not refer to the area pointed to by *restrict_matrix through a pointer that isn’t based on
*restrict_matrix.” This gives permission to the optimizer: “As long as you don’t see assignments
[rom *restrict_matrix, you can trustthatitisn’t aliased.”

With volatile, the directions of constraint and permission are reversed: volatile constrains

the implementor: “Beware of unpredictable changes in the value *volatile_matrix,” but gives per-
mission to the user: “You can use this picce of code with volatile objects.”

4!

o

-2- N300

The assymmetric rules for conversion between qualified and unqualified types are geared towards the
volatile model, not towards the restrict model.
To observe the conversion rules in action, let’s introduce completely unqualified pointers and ook at
the restrictions and semantics for conversion from and to them.
char ** alloc_matrix(); /* allocate empty matrix */
char ** free matrix(char ** m); /* free() a matrix */

The assignment to a pointer to volatile

volatile matrix = alloc_matrix();

is safe—there’s probably nothing volatile at *alloc_matrix(), but the compiler treats it as if
there were, anyway. The opposite direction

free matrix(volatile_matrix); /* constraint violation */

violates a constraint in 6.3.16.1 by losing a qualifier: I've asked the compiler to handle
*volatile_matrix with special care, yet suddenly I allow it to lapse upon entry to the
free_matrix function—sounds contradictory, and C requires an explicit cast.

With restrict. the opposite semantics apply. The assignment

restrict_matrix = alloc_matrix();

is unsafe. It expresses a promise I make as a programmer to the code that uses restrict_matrix:in
restrict_matrix’s scope, no expressions will access **restrict_matrix except those visibly
based on the *restrict_matrix pointer. The reverse form promises nothing,

free matrix(restrict_matrix); /* constraint violation */

but is prohibited, since it would strip the type pointed to by restrict_matrix of one of its qualifiers.

Why bother getting it right?
In most cases, assignments to and from restricted pointers will happen on the topmost level of
indirection; even more so while programmers are still getting acquainted with the new feature.

char * restrict str = "Hello, World!";

A type qualifier on the topmost level applies to the lvalue, but not to the type of the rvalue; vola-
tile, const, and restrict values will be freely assignable amongst each other. Should we really
need to assign an unqualified pointer to a pointer to restricted, we can always cast. So why bother? Does it
matter if the semantics are a little bit oft? I think yes, for two reasons.

1. In C, one cannot just ‘cast a type qualifier away.” Casts are very powerful; whenever programmers
have to cast, they lose almost all type safety. Normally, casts suggest that something
implementation-specific is going on; in case of restrict they suddenly are required to express
semantically inconspicuous and straightforward operations. That’s a bad thing.

2 Restricted pointers are not a localized phenomenon. Code optimizes better, or can in some cases
only be parallelized at all, if all pointers on all levels of indirection within a block of code are res-
tricted, and if pointers within data structures are restricted. When objects, not just values, are con-
cerned. an additional level of indirection arises quickly: a dynamic array of something, a function
that allocates something; a function that sets a pointer for later use.

Proposed solution

Make a restrict-qualified pointer compatible with its not restrict-qualified counterpart. This would
allow implicit conversions to proceed in both directions, adding and removing restrict qualifiers at
will.

Ib

