Document Number: WGI14 N 499

C9X Revision Proposal

Title: Incorporate the long long integral data type into C9X
Author: Roland Hartinger

Author Affiliation: Siemens Nixdort Informationssysteme AG
Postal Address: Otto-Hahn Ring 6, 81730 Munich, Germany
E-mail Address: Roland.Hartinger @mch.sni.de

Telephone Number: +49.89.63644081

Fax Number: +49.89.63644716

Sponsor: DIN

Date: 1995-22-12

Proposal category:
___ Editorial change/non-normative contribution
___ Correction

x New feature

____Addition to obsolescent feature list
____Addition to Future Directions

___ Other (please specity)

Area of Standard Affected:
x Environment
x Language
____ Preprocessor
x Library
x Macro/typedef/tag name
x Function
x Header
___ Other (please specify)

Prior Art: Numerous modern C compilers

Target Audience: System and application programmers
Related Documents (if any): MIPS ABI Black Book 2.0
Proposal Attached: _x_ Yes __ No. but what’s your interest?

Abstract:

This document proposes a new type long long, an integral type with a guaranteed minimum pre-
cision of 64 bits. This follows widespread practice of compiler vendors. who, faced with their customers’
requests for large integer types. preferred to extend the language rather than to change the size of an exist-

ing type.

z6&

Incorporate the long long integral data type into C9X

Roland Hartinger

Siemens Nixdorf Informationssysteme

ABSTRACT

This document proposes a new type long long, an integral type with a
guaranteed minimum precision of 64 bits. This follows widespread practice of compiler
vendors, who, faced with their customers’ requests for large integer types, preferred to
extend the language rather than to change the size of an cxisting type.

I. Introduction

Large data bases. large file systems, and object request broker systems need large integers. CYON
should respond to this need by providing an integer type with a guaranteed precision of at least 64 bits.

At first glance, it might seem that this can be easily accomplished by requiring long to have at least
64 bits of precision. However, a C9X Standard that did this would force vendors to break their customers’
code; not just unportable code that follows the widespread assumption of 32-bit long integers. but also
any code that uses precompiled libraries and binary format data. Such a standard would meet considerable
resistance from vendors and users.

Vendors can freely choose the size of the basic data types when they introduce a completely new
system (on which all of the software will be new and will share the same data sizes), but changing the size
or representation of a basic data type on an existing system has far-reaching consequences.

Consider what happens when a customer modifies and recompiles a program on an implementation
which has just changed the size of a long from 32 bits to 64 bits. Raw binary data files break. Perhaps
more importantly, calls to libraries compiled with the old implementation break (the library source file says
that the argument to a particular function is a long, which was 32 bits in the old implementation, so the
function in the library object file expects to be passed a 32 bit type; the library header file. included by the
application, also says that the argument to the same function is a long, which is now 64 bits. so the appli-
cation passes a 64 bit type).

The consequence is that the customer cannot modify an application without recompiling (if they have
source) or obtaining recompiled versions of (if they do not) all of the libraries used by that application.
Everything has to change at once; there is no gentle transition. For this reason, many system vendors chose
to avoid changing the sizes of the basic integer types and instead established long long as a de facto
standard.

C9X should follow the vendors’ practice and introducc long long as a new basic integer tvpe
with a guaranteed minimal precision of 64 bits.

II. Compatibility aspects

1. ISO C++

If this proposal will be accepted by WG14 for C9X, it should also become part of the forthcoming
C++ Standard. Such an extension has already been proposed to the X3J16/WG21 C++ Committee (Doc.
No.: 95-0115/NO715, June 13, 1995).

i N 190

2. Application Binary Interface

Proposals of 64 bit C API's for different processor architectures have already been circulated by
some ABI committees. [have examined the MIPS ABI definition, the only one to which I have access.
This definition requires features that are close to the ones proposed here, except that this proposal uses “II”
in place of “64” in its identifiers and leaves the exact precision of long long to the implementation.

3. External identifier length

Some of the new long long library function names are not unique in their first six or even seven
characters (e.g. strtoull, strtoll). Implementations that support no more than seven significant
characters in external identifiers will have to internally map these functions’ names to shorter names (e. g.
os2ull, s21l).

III. Implementation aspects
This extension does not need any new keywords. It fits smoothly into the ISO C language and its
already well-defined integral data types (char, short, int, long).

There are numerous C implementations today which already support the long long extension.
These compilers have proven its implementability in practice; the extension does not burden the standardi-
zation process and the implementors with new risks in time and with undetermined costs.

If the underlying processor does not support integrals of 64 bits, long long and its operations can
be emulated by software based on the existing integral types.

IV. Learning and teaching aspects

Since this is a minimal extension to the already well-defined integral data types. constants. and
library functions, it also requires minimal effort to teach and learn.

V. Changes to the ISO/IEC 9899:1990, Programming Language C

The following sections describe the long long data type extension in terms of the ISO/IEC
9899:1990, Programming Language C Standrad. Subclause numbers refer to the fourth C9X draft; where
appropriate, changes have been underlined. Some new subclauses must be created to accommodate new
long long library functions.

5 Environment

5.2.4.2.1 Sizes of integral types <limits.h>

Add the following macros to the end of paragraph 1:

— minimum value for an object of type long long int

LLONG_MIN -9223372036854775807
— maximum value for an object of type long long int
LLONG_MAX 9223372036854775807
— maximum value for an object of type unsigned long long int
ULLONG_MAX 18446744073709551615
6. Language

6.1.2.5 Types

Change the first sentence in paragraph 3 to:

There are five signed integer types, designated as signed char, short int.
int, long int,and long long int.

=3 N 199

6.1.3.2 Integer constants
Extend the Syntax as follows:
integer-suffix:

unsigned-suffix long-long-suffix

A _ opt
long-long-suffix unsigned-suffix

opt
long-long-suffix: one of

11 LL

Change the Semantics part, beginning with its fourth sentence, as follows:

Unsuffixed decimal: int, long int, unsigned long int, long long int.
unsigned long long int; unsuffixed octal or hexadecimal: int. unsigned
int, long int. unsigned long int, long long int, unsigned long
long int; suffixed by the letter u or U: unsigned int, unsigned long int.
unsigned long long int;suffixed by the letter 1 or L: long int. unsigned
long int, long long int, unsigned long long int; suffixed by both the
letters wor Uand 1lor L: unsigned long int, unsigned long long int:

Append to the same sentence:
suffixed by 11 or LL: long long int, unsigned long long int: suffixed
by both wor Uand 11l or LL: unsigned long long int.

In C89, unsuffixed decimal constants in the range from LONG_MAX+1l to ULONG_MAX urc
assigned unsinged long type. The introduction of long long requires a design choice between
unsigned long and long long type for these constants. Although selecting long long would
have been more consistent with the “value preserving” style of the C Standard, it was considered more
important to protect existing code that relies on the unsignedness or the size of a constant on a particular
implementation.

6.2.1.5 Usual arithmetic conversions

The promotion rules for long long are analogous to those for long. They are inserted at the
top of the indented section ending paragraph 1:

If either operand has type unsigned long long int, the other operand is converted
to unsigned long long int.

Otherwise, if one operand has type long long int and the other has type unsigned
long int, if a long long int can represent all values of an unsigned long
int, the operand of type unsigned long int isconverted to long long int:ifa
long long int cannot represent all the values of an unsigned long int, both
operands are converted to unsigned long long int.

Otherwise, if one operand has type long long int and the other has type unsigned
int,ifa long long int can represent all values of an unsigned int, the operand
of type unsigned int isconverted to long long int;ifa long long int can-
not represent all the values of an unsinged int, both operands are converted to
unsigned long long int.

Otherwise, if either operand is long lomng, the other operand is converted to long
long.

Otherwise. if either operand has type unsigned long int,...

-4 - N 499

6.3 Expressions

For unsigned operands, the ~ and << operators are defined in terms of arithmetic modulo an
unsigned integral type’s largest value plus one. These descriptions are extended to include the
unsigned long long int case.

6.3.3.3 Unary arithmetic operators
Change the last two sentences of paragraph 5 to the following:

The expression ~E s equivalent to (ULLONG MAX-E) if E is promoted to tvpe
unsigned long long. (ULONG_MAX-E) if E is promoted to type unsigned
long, and to (UINT_MAX-E) if E is promoted to type unsigned int. (The con-
stants ULLONG MAX, ULONG_MAX, and UINT MAX are defined in the header
<limits.h>.)

6.3.7 Bitwise shift operators

Change the last two sentences of paragraph 5 to the following:
If E1 has an unsigned type. the value of the result is E1 multiplied by the quantity. 2 raised
to the power E2. reduced modulo ULLONG MAX+1 if E1 has tvpe unsigned long
long, ULONG_MAX+1 if E1 has type unsigned long, UINT_MAX+1 otherwise.
(The constants ULLONG MAX. ULONG_MAX, and UINT_ MAX are defined in the header
<limits.h>.)

6.5.2 Type specifiers
Add the following two items to the list of type specifier sets in the Constraints paragraph. between
unsigned longand float:
— long long, signed long long, long long int, or signed long
long int

— unsigned long long, or unsigned long long int

7. Library functions

7.9.6 Formatted input/output functions

The fprintf and f£scanf functions are extended to interpret 11 to specify integers as long
long wherever 1 specifies them as long. The sequence 11 was preferred to the alternative, L.
because it is both what programmers expect and dominant in existing practice.

7.9.6.1 The fprintf function

Add the following text to the fourth item near the end of paragraph 4:

an optional 11 (ell-ell) specifying that a following 4, i, o, u, x, or X conversion

specifier applies to a long long int or unsigned long long int argument;
and:

an optional 11 (ell-ell) specifying that a following n conversion specifier applies to a

pointerto a long long int argument;

Change the same paragraph, same list item, last sentence:

If an h, 1. 11, or L appears with any other conversion specifier, the behavior is
undefined.

~

-5- N 499

7.9.6.2 The fscanf function
In paragraph 4, change the beginning of the third list item to:
Anoptional h, 1 (ell), 11 (ell-ell) or L indicating the size of the receiving object.

In the same list item, change the end of the second sentence:

...,or by 1ifitisapointerto long int, or by 11 if it is a pointer to long long
int.

Similarly, change the end of the third third sentence:
..,or by 1ifitis a pointer to unsigned long int, or bv 11 if it is a pointer to
unsigned long long int.

Change the last sentence of the list item to:

If an h, 1, 11, or L appears with any other conversion specifier. the behavior is
undefined.

7.9.9 File positioning functions

Since the more abstract £getpos and fsetpos functions do not offer the same degree of control
as their ancestors fseek and ftell, versions of the latter with long long offsets would be
genuinely helpful when handling large file systems. The following two functions could be added:

7.9.9.6 The f£llseek function

Synopsis

#include <stdio.h>
int fllseek(FILE *stream, long long int offset, int whence);

Description

The fllseek function is similar to the f£seek function, except that it accepts a long long
int offset as its second argument.

7.9.9.7 The £11tell function

Synopsis

#include <stdio.h>
long long int flltell(FILE * stream);

Description

The £11ltell function is similar to the £tell function, except that it returns a long long
int value as a large file position.

7.10 General utilities <stdlib.h>
Change the first two paragraph of 7.10 to introduce the type 11div_t alongside 1div_t and div_t.
The header <stdlib.h> declares five types and several functions of general utility,
and defines several macros.'?®
The types declared are size_t and wchar_t (both described in 7.1.6),
div_t
which is a structure type that is the type of the value returned by the div function,
ldiv_t

Gy

-6- N 499

which is a structure type that is the type of the value returned by the 1diwv function, and
1ldiv_t
which is a structure type that is the type of the value returned by the 11div function.

7.10.1 String conversion functions
Change the first sentence of the first paragraph to:

The functions atof, atoi, atol and atoll need not affect the value of the
integer exXpression errno on an error.

Add the following functions:
7.10.1.7 The atoll function

Synopsis

#include <stdlib.h>
long long int atoll (const char *nptr);

Description

The atoll function is similar to the atol function. except that it converts the initial portion of
the string pointed to by nptr to long long int representation. Except for the behavior on error. it
Is equivalent to

strtoll (nptr, (char **)NULL, 10)

Returns
The atoll function returns the converted value.

7.10.1.8 The strtoll function

Synopsis

#include <stdlib.h>
long long int strtoll(const char *nptr, char **endptr, int base);

Description

The strtoll function is similar to the strtol function. except that it converts the initial portion
of the string pointed to by nptrto long long int representation.

Returns

The strtoll function returns the converted value, if any. If no conversion could be performed.
zero is returned. If the correct value is outside the range of representable values. LLONG_MAX or
LLONG_MIN is returned (according of the sign of the value), and the value of the macro ERANGE is
stored in errno.

7.10.1.9 The strtoull function

Synopsis
#include <stdlib.h>

unsigned long long int strtoull(const char *nptr, char ** endptr,
int base);

i B N 499

Description
The strtoull function is similar to the strtoul function, except that it converts the initial por-
tion of the string pointed to by nptr (0 unsigned long long int representation.

Returns

The strtoull function returns the converted value. if any. If no conversion could be performed.
zero is returned. If the correct value is outside the range of representable values, ULLONG_MAX is
returned, and the value of the macro ERANGE is stored in errno.

7.10.6 Integer arithmetic functions
7.10.6.5 The 1llabs function

Synopsis
#include <stdlib.h>
long long int llabs(long long int 3j);

Description

The 1labs function is similar to the abs function. except that the argument and the returned
value each have type long long int.

7.10.6.6 The 1ldiwv function

Synopsis

#include <stdlib.h>
1ldiv_t 1lldiv(long long int numer, long long int denom);

Description

The 11div function is similar to the diwv function, except that the arguments and the members of
the returned structure (which has type 11div_t) all have type long long int.

7.16.4.1 Wide-string numeric conversion functions
7.16.4.1.4 The wcstoll function

Synopsis

#include <wchar.h>
long long int wcstoll(const wchar_t *nptr, wchar_ t **endptr,
int base);

Description
The westoll function is similar to the westol function. except that its returned value has type
long long int.

Returns

The wcstoll function returns the converted value, if any. If no conversion could be performed.
zero is returned. If the correct value is outside the range of representable values, LLONG_MAX or
LLONG_MIN is returned (according (o the sign of the value), and the value of the macro ERANGE is stored
in errno.

Ly

g N 499

7.16.4.1.5 The westoull function

#include <wchar.h>
unsigned long long int wcstoull (const wchar_t *nptr,
wchar t **endptr, int base);

Description

The westoull function is similar to the westoul function. except that its returned value has
type unsigned long long int.

Returns

The westoull function returns the converted value, if any. If no conversion could be performed.
zero is returned. If the correct value is outside the range of representable values, ULLONG_MAX is
returned, and the value of the macro ERANGE is stored in errmno.

