N498

Document Number: WG14 N498/X3J11 95-099

C9X Revision Proposal

Title: Unnamed structure/union members
Author: Ken Thompson
Author Affiliation: AT&T Bell Labs
Postal Address: Room 2c519; Murray Hill, NJ 07974
E-mail Address: ken@plan9.att.com
Telephone Number: +1 908 582-2394
Fax Number: +1 908 582-5857
Sponsor:
Date: Nov 26 1995
Proposal Category:
Editorial change/non-normative contribution
__ Correction
XX New feature
Addition to obsolescent feature list
Addition to Future Directions
__ Other (please specify)
Area of Standard Affected:
Environment

XX Language
Preprocessor
Library
___ Macro/typedef/tag name
___ Function
___ Header
___ Other (please specify)
Prior Art: Plan 9, Microsoft and GCC C compilers
Target Audience: System Programmers

Related Documents (if any): none
Proposal Attached: Yes

Abstract: Allow structures/unions with no names as
members of structures/unions. Allow promotion

of names and types of the sub-structure/sub-union
members into the names and types of the enclosing
structure/union.

Proposal:

This proposal involves 1 syntactic change and 2 semantic changes.

2 semantic changes should be treated as 2 independent proposals.
semantic proposals require the syntactic change.

1. Syntactic Change

current syntax:
struct-declaration:

specifier-qualifier-list struct-declarator-list ;

proposed syntax:
struct-declaration:

specifier-qualifier-list struct-declarator-list ;

struct-or-union-specifier ;
typedef-name ;

Page 1

The
Both



N4a3Jo

This allows unnamed structure or union (SU) members if they are also

SUs. (In the syntax above,

SU.)

the typedef-name must be a typedef of a

2. Semantic change 1 - name promotion.

A member name is interpreted in a SU as follows:

1. if the member name is a member in the SU, then that
member is uniquely chosen regardless of unnamed
sub-SUs

2. 1f the member name is ambiguous in any unnamed
sub-SU then the name is ambiguous

3. if the member name is uniquely chosen from exactly one unnamed
sub-SU then the name is uniquely chosen

4., if the member name is uniquely chosen from more than
one unnamed sub-SU then the name is
ambiguous.

An ambiguous member name is illegal and, of course, no match is also

illegal.

This proposal does not alter the interpretation of any existing

legal programs.

int
int

aaj;

int
int
union

}:

bb;
(o] ol

int

dd;

X.aa gets the .aa member of x without any extension
x.bb is ambiguous and therefore illegal

.cc member of the second

unnamed sub-structure of x

.dd member in the unnamed sub-union
within the second unnamed sub-structure of x.

given:
struct
{
struct
{
}:
int
struct
{
}:
} %3
then:
X.CC gets the
x.dd gets the
rationale:

Lots of programs contain fictitious SU

names to overlay storage. There are many pieces
of code with references like "p->sl.u2.s4.y" that
can be changed to "p->y" along with very natural
rewriting of the SUs.

3. Semantic change 2 - type promotion.

Page 2

22



N498

In
an assignment statement of a SU to a
variable of the type of an unnamed sub-SU

OR

an assignment statement of a pointer-to SU
to a variable of the type of pointer-to an
unnamed sub-SU,

then the assignment is of the unnamed SU OR of the pointer-to the
unnamed SU.

The same type promotion occurs if a SU (OR a pointer to a SU) is
passed as an argument to a function that has been prototyped to be of
the type of an unnamed sub-SU.

(note: NOT part of the proposal: It would be consistent, but not
useful, to allow this conversion in the subtraction of pointers and
comparison of pointers. In the implementation of this extension,
modification needs to be added in the compiler only at the place where
the constant, 0, is converted to a pointer of the appropriate type.)

If there are two unnamed sub-SUs with the same type then the
assignment (or argument passing) is ambiguous and illegal.

This proposal does not alter the interpretation of any existing legal
programs.

given:
typedef struct
(internal stuff)
} Lock;
void lock (Lock¥*) ;
struct
{
(internal stuff)
Lock:;
(more internal stuff)
}ox;
then:
In a program, it is proper to call the function,
lock, with the argument, &x.
The function, lock, expects a pointer-to a Lock
structure. The structure, x, has an unnamed sub-
structure of type, Lock. Passing &x to lock will
cause a type conversion to Lock* by passing the
address of the unnamed Lock sub-structure.
rationale:

Any name that the programmer assigns to the Lock
sub-structure is simply to tag it in passing it

to the lock function. There is no reason to invent
these names. This is a limited form of type inheritance.

Page 3



