Issues Affecting a 1ong long Data Type

WG 14/N497 X3J11/95-098
1995-12-22

David Keaton
dmk@ dmk.com

This document presents some issues to be considered before adding a long long data type to the C
language. Adding this type affects the longest integral type available, the constant promotion rules, and

portability.
Longest Integral Type

Existing C code relies on the guarantee that long is the longest integral type. For example, the
following commonly used idiom is necessary to print out an object of type size_t. Since size_t might
be any unsigned integral type smaller than or equal to an unsigned long, the longest type must be
assumed.

printf ("$lu\n", (unsigned long)x);

If it suddenly becomes possible to map size_t to a larger type, such code will break when ported to
systems that do so. It has been pointed out that no object can be statically declared to be large enough to
be a problem. However, dynamically allocated objects whose sizes are derived from external data will
still cause difficulties in this context.

This could be fixed by disallowing any mapping of the standard typedefs size_t, ptrdiff_t, and
sig_atomic_t to long long. Even wchar_t is affected in the case that the user desires to print out the

numeric value of a wide character.

The fact that on some machines long long may be the same size as long is irrelevant, since the purpose
of long long is to create a type that can be larger than long on some systems (initially most of them).

Promotion of Constants
On a 32-bit machine, the function call
£(-2147483648);

passes the most negative integer as an argument to the function. This author added a 1ong long data
type to a compiler for a company that used such calls in intentionally nonportable systems code that they
were unwilling to change. Function prototypes were not used. When the promotion rules for integral
constants were upgraded in the ‘‘obvious’’ way to accommodate long long, this code broke and the
company mandated that constants never be promoted beyond the original C data types. Note that the
same problem would occur with variable argument lists even in the presence of function prototypes.

For that company, this was fixed by requiring an LL suffix on all long long constants.

The problems listed so far can be overcome by demoting long long to a second-class type. The
following problem has no such solution.

Type Mapping Explosion

The more ways there are to map types to sizes, the more chances there are to create porting difficulties.
To see just part of this problem, let us consider a restricted mapping space in which the only allowed
sizes above char are 16, 32, 64, and 128 bits. Further, let us assume that no data type other than long
long will ever map to 128 bits. For the traditional data types, this gives the following possible
mappings for different machine types.

short int long

16 16 32
16,32 o1 92
B2 82 1032
16 16 64
16 32 64
32 32 o4
16 64 64
32 64 64
64 64 64

With long long added in, the number of possibilities doubles: the above mappings are repeated once
for a long long size of 64 bits, and again for 128 bits. Even if some of the resulting combinations are
unlikely, the increase in possible scenarios is significant. The long long type hinders portability rather
than helping it.

Conclusion

There is no doubt that long long exists in some implementations; this author created one of them.
However, significant language design problems suggest that we seriously consider keeping the data type
out of the C standard. It would have to be a second-class integral type to keep from breaking existing
code, and this defeats some of the uses contemplated for it, for example, to widen size_t to correspond
to 64-bit pointers. It would also cause C to have even more portability problems than it already has.

2.0

