Document Number: WG1l4 N#4%0/X3J11 95 -03%|

C9X Revision Proposal

Title: Function Literals

Author: Paul Long
Author Affiliation: Performance Computing Incorporated

Postal Address: 15050 SW Koll Parkway, Suite 2B
Beaverton, Oregon 97006 USA

E-mail Address: plong@perf.com or paul_ longeortel.org
Telephone Number: +1 503 6411221

Fax Number: +1 503 6413344
Sponsor:
Date: 1995-07-27
Proposal Category:
___ Editorial change/non-normative contribution
__ Correction
X_ New feature
Addition to obsolescent feature list
Addition to Future Directions
__ Other (please specify)
Area of Standard Affected:
__ Environment
X Language
Preprocessor
Library
__ Macro/typedef/tag name
__ Function
__ Header
__ Other (please specify)
Prior Art:

Lisp lambda expressions [1] and CA-Clipper code blocks
[5] . These are important features in their respective
languages, and their counterpart would be an important
addition to C. Here are roughly equivalent examples coded
in Lisp, CA-Clipper, and C.

(lambda (x) (print x))
{1x] qout(x)}
(void () (char *)){|x| puts(x); }

Lisp has been around for about thirty-five years. There
are, conservatively, 5000 Lisp programmers. CA-Clipper is
a nine-year-old superset of the dBase language. Code
blocks were added five years ago. There are between 3000
and 4000 CA-Clipper programmers.

Target Audience:

All C programmers. The typical use of function literals,
which would effect all C programmers, is as call-back
functions, such as the comparison function called through
a function pointer by the standard-library "bsearch"

7/

function. The ability to succinctly define jump tables
using function literals could particularly benefit those
programmers who use event-driven architectures, such as
GUI programmers and embedded-systems programmers.

This language feature would probably increase the use of
function pointers throughout the C programming community
because function pointers would be easier to form--a
function could be defined where its designator is used.
(By ‘‘function pointer,’’ I specifically mean an
expression having type pointer to function and *not*
consisting solely of an identifier declared as having
function type.) ‘

Related Documents (if any):

1. ANSI X3.226:1994, ‘'‘‘American National Standard for
Programming Language--Common LISP’’, X3J13.

2. Baker, Henry G. ‘‘Iterators: Signs of Weakness in
Object-Oriented Languages’’. *ACM OOPS Messenger 4*,3
(July 1993), 18-25.

3. ISO/IEC 9899:1990, ‘'‘Programming Languages--C’'’.

4. Stepanov, A. and Lee, M. '‘The Standard Tmeplate
Library’’. Hewlett-Packard Laboratories, 1994.

5. Tilney, William E. *Using Clipper, Special Edition*.
Que Books, 1993.

6. Prosser and Keaton. C9X Proposal, ‘'‘Compound
Literals’’. WG14 N403/X3J11 93-004, 1995.
Proposal Attached: __ Yes X No, but what’s your interest?
Abstract:

A *function literal* is an unnamed function. The syntax
is similar to that of compound literals [6]. A function
literal is distinguished from a compound literal by a
type name that is syntactically a function declaration
and by a bar-enclosed optional identifier list
immediately following the left curly brace.

function-literal:
(type-name) { | identifier-list opt |
declaration-list opt statement-list opt }

The parameter types in the parameter-type list of the
type name are the respective types of the parameters
whose identifiers are in the identifier list. The number
of parameter types shall be equal to the number of
identifiers in the identifier list, with the exception
that there is no identifier for void type.

The type of a function literal is the named type. A
function literal undergoes the same conversion-to-pointer
scheme as any other function designator.

Declarations that are made within the same scope and at
outer scopes to the scope within which a function literal
occurs are visible to the function literal. When a
reference to an object with automatic storage duration
that is no longer guaranteed to be reserved is evaluated,
the behavior is undefined.

Identical function literals containing references to the
same objects need not be distinct.

Examples

Here is a function literal used as a call-back function
to the "bsearch" function.

p = bsearch(&key, a, sizeof a / sizeof *a, sizeof *a,
(int () (const void *, const void *)){|x, y|
return *(int *)x - *(int *)y;});

Here is an example that illustrates how scope and storage
duration relate to a function literal. ‘

foo() {
int a;
int (*bar) () ;

{

int 1 = 1;
bari= (int () eVk{] | returnd; «};

int i = 2;
int ¢ = bar();

}
a = bar();

}

As the function, "foo", is executed,

- "b" ig get:to 1,

- "c" is set to 1 and not 2 because the function
literal contains a reference to i that is bound to
the object at the scope within which the function
literal appears, not when it is called, and

- the behavior is undefined when the function literal
is called at the outer-most scope because the
function literal refers to an object with automatic
storage duration that is no longer guaranteed to be
reserved.

The undefined behavior resulting from evaluating an
object with automatic storage duration that is no longer
guaranteed to be reserved is no more onerous than the
behavior that results from the following passage in
section 6.1.2.4 [3]--'‘The value of a pointer that
referred to an object with automatic storage duration
that is no longer guaranteed to be reserved is
indeterminate.’’ Here are analogous examples of referring
to objects with automatic storage duration when they are
no longer quaranteed to be reserved. First, via a pointer
to such an object:

int *bar() {

7J

int 1 = 3;
return &i;

}

foo () {
}

int j = *bar();
Next, via a function literal that refers to such an

object:
int (*bax¢))4}) {
int 1 = 3;
return (int () ()){]|| return i; };
foo() {
int j = bar() ();
}
Rationale

If compound literals are accepted into the revised C
Standard, all complete types will have literal and
non-literal forms except void type and function types. It
would make no sense to have a void literal (probably),
but function literals would be quite useful. Of function
literals and the compound literals, I--and I believe that
most programmers--would find function literals the most
useful, followed by structure compound literals and then
array compound literals. Function literals would complete
the set of literals in C.

I came to consider their addition to C by way of
disliking iterators (see [2]), such as those in the
Standard Template Library (STL) [4]. Instead, wherever
possible, I favor macros or functions for traversing and
searching. Functions of this type use a call-back
function for their action. Examples are the STL

"for each" template function and the C standard-library
"bsearch" function. However, a problem with call-back
functions is that their definition is lexically distant
from their reference. This often makes code ponderous and
therefore difficult to understand. A solution is to use a
function literal in place of the reference to a function
that is defined elsewhere.

Implementation Issues

Function literals present opportunities for code-space
optimization, e.g., just as these two string literals may
occupy the same memory location, so may the first two
function literals. Binding complicates things,
though--syntactically identical function literals, such
as the first, second, and third ones, may bind to a
different set of objects.

foo() {
2Y

chax. %8l *82:
void (*f1) (void), (*f2) (void), (*£3) (void);
unsigned lineno;

sl = "hello";
s2 = "hello";
f1 = (void () (void)) ++lineno; };
f2 = (void () (void)) ++lineno; };
{ : :
unsigned lineno;
£3 = (void () (void)){|| ++lineno; };

Language Compatibility Issues

Differences between function literals and the cited prior
art include:

- syntax
- function literals employ lexical scoping, and do not
form closures, as does the prior art

Subsetting

Because function literals are such a fundamental feature,
I do not recommend subsetting.

Alternatives

Although a programmer would probably expect to be able to
refer to identifiers declared in all outer scopes,
function literals could act like regular function
definitions and disallow references to identifiers
declared within other functions.

Here are the four, often conflicting, goals for
function-literal syntax, ordered in decreasing
importance, by which this proposal was guided.

similarity to compound-literal syntax
what a programmer would expect

similarity to function-declaration syntax
brevity

B wnn R

This is an example using the proposed syntax.

(int () (const void *, const void *)){ |x, y|
int Qiff = *(int *)x - *(int *)y;
return diff; }

Alternative syntaxes could emphasize different orders.
Here are some progressive alternatives, expressing the
same example. They de-emphasize goals 1 and 2 then
emphasize goals 3 and 4. These are offered only for

thought --some may actually represent ambiguous grammars.
1. Remove the declaration list from the function body.

(int () (const void *, comnst void *)){ |x, y|
return * (int *)x - *(int *)y;

2. Instead of an optional statement list, the function
body is an optional expression. Sequence and
alternation are accomplished with the comma operator
and the conditional operator, respectively. Iteration
and the direct transfer of control (i.e., via the goto
statement) are not possible. This leaves plenty of
room for expressive logic but discourages lengthy
function literals. At this point, "expression literal"
might be a better term than "function literal."

(int () (const void *, const void *)){ |x, Y|
*(int *)x - *(int *)y; }

3. Abandon the parenthesized type name in favor of
integrating the function declaration with the
identifier list. This avoids the K&R-like function
definition where identifier list and parameter type
declarations are separate, but it no longer uses
syntax that is similar to compound literals.

{ int |const void *x, const void *y|
*(int *)x - *(int *)y; }

4. The use of parentheses instead of bars to enclose the
parameter type list.

{ int (const void *x, const void *y)
*(int *)x - *(int *)y; }

