C9X Proposal Initializer Repetition Counts

10

15

20

25

30

35

WG14/N474 X3J11/95-075

David Keaton (dmk@ dmk.com)
25 August, 1995

1. Introduction
1.1 Purpose

This document specifies the form and interpretation of a pure extension to the language portion of the C
standard to provide important additional flexibility to initializers.

1.2 Scope

This document, although extending the C standard, still falls within the scope of that standard, and thus
follows all rules and guidelines of that standard except where explicitly noted herein.

1.3 References
1. ISO/IEC 9899:1990, Programming Languages — C.

2. WGI14/N472 X3J11/95-073, Prosser & Keaton. C9X Proposal, Designated Initializers, 25 August,
1995.

3. WGI4/N473 X3J11/95-074, Keaton. C9X Proposal, Rationale for Designated Initializers, 25
August, 1995.

All references to the ISO C standard will be presented as subclause numbers. For example, §6.4
references constant expressions.

1.4 Rationale

Initializer repetition counts provide a mechanism for initializing multiple elements of an array with the
same value, a practice common in numerical programming. They add useful functionality that already
exists in Fortran so that programmers migrating to C need not suffer the loss of a program-text-saving
notational feature.

Initializer repetition counts integrate easily into the C grammar and do not impose any additional run-
time overhead on a user’s program. They also combine well with designated initializers (see [2] and [3]).

Note that this proposal only applies the feature to arrays. In theory it could be extended to any
aggregate or union type. The author’s initial gut reaction is that this would cause more programming errors
than it solves, but the issue is open for debate and the proposal could easily be changed to accommodate all
aggregate and union types.

2. Language
2.1 Designated Initializers

The syntax for initializer repetition counts was deliberately chosen so that it would not depend on the
existence of designated inmitializers [2]. However, they do combine to form an even more convenient
notation. This is discussed further below.

If designated initializers are accepted into the C language, more possibilities for the syntax of initializer
repetition counts could be considered.

Negative repetition counts are not proposed here because any functionality they would add could just as
easily be obtained by combining designated initializers and initializer repetition counts. Requiring
nonnegative repetition counts also simplifies their specification.

C9X Proposal Initializer Repetition Counts

10

15

20

25

30

35

WG14/N474 X3J11/95-075

2.2 Initializer Repetition Counts

The syntax for initializers in §6.5.7 is changed to the following, and the constraints and semantics are

augmented by the following:

Syntax
initializer:
assignment-expression
{ imtializer-list }
{ initializer-list , }
initializer-list: _
repetition-countop , initializer
initializer-list , repetition-countop ; initializer
repetition-count:
* [repetition-count-expression strideopt 1 =
repetition-count-expression:
constant-expression
stride:
s stride-expression
stride-expression:
constant-expression
Constraints

No initializer shall attempt to provide a value for an object not contained within the entity being
initialized.!

An object initialized with a repetition-count shall have array type and the repetition-count-expression
shall be an integral constant expression that shall evaluate to a nonnegative value. If the array is of
unknown size, any nonnegative repetition count value is valid.

A stride-expression shall be an integral constant expression that shall evaluate to a nonzero positive
value.

Semantics

A repetition count with a value r followed by an initializer is equivalent to r successive appearances of
the value or values of that initializer. The initializer itself is evaluated exactly once.?

A stride with a value s indicates that the following initializer initializes only the current indexed array
element and every sth element thereafter within the range specified by the repetition count; the others are
skipped.

If an array of unknown size is initialized, its size is determined by the largest indexed element that is
explicitly initialized.3

1. This replaces the current first constraint of “There shall be no more initializers in an initializer list than there are
objects to be initialized.” It also mirrors the first constraint required for designated initializers [2].

2. There is room for discussion here. The intent is that compilers that extend initializers to include nonconstant expressions
should generate the side effects exactly once.

3. This encompasses both the current “size determined by the number of initializers” rule and the designated initializers [2]
rule that “‘size is determined by the largest indexed element with an explicit initializer.”

~

i

S

£~

C9X Proposal Initializer Repetition Counts WG14/N474 X3J11/95-075

10

15

20

Examples
The following sets the entire array costs to initially contain large values.
double costs[1000] = { *[1000] = HUGE_VAL };

The following is an example of a way that designated initializers [2] might be combined with initializer
repetition counts to achieve a one-line initialization of the interior of an array. The designator comes before
the * and the repetition count comes after it.

int interior mask[100][100] = { [1]1*[98] = { [11*[98] =11} };

Repetition counts combined with designated initializers could be used to initialize an array with a
particular value, and then override certain locations.

int primes[100] = {
*[100] = TRUE,
[0]1*[2] = FALSE,

[0]*[100:2] = FALSE,
[0]*[100:3] = FALSE,
[0]*[100:5] = FALSE,
[0]*[100:7] = FALSE,

[2] = TRUE,
[3]1*[4:2] = TRUE

