ISO/JTC1/SC22/WG14 /N464 Page 1

Document Number: WG1l4 N464/X3J11 95-065

C9X Revision Proposal

Title: Ordering and Alignment Extensions (OAX)
Author: Frank Farance, William Rugolsky, Jr.
Author Affiliation: Farance Inc. :
Postal Address: 555 Main Street, New York, NY, 10044-0150, USA
E-mail Address: frankefarance.com, rugolsky@farance.com
Telephone Number: +1 212 486 4700
Fax Number: +1 212 759 1605
Sponsor: X3J11
Date : 11995=08<25
Proposal Category:
___ Editorial change/non-normative contribution
i Correction
X New feature
___ Addition to obsolescent feature list
___Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
___ Environment
X Language
~ Preprocessor
Library
Macro/typedef/tag name
Function
I nHeader
Prior Art: IEEE 1596.5 standard, BSD networking functions
Target Audience: C programmers, network and database applications
Related Documents (if any): IEEE 1596.5, SBEIR proposal, REP proposal
Proposal Attached: X_Yes __ No, but what’s your interest?

Abstract:

This proposal enhances the features of the SBEIR
(Specification-Based Extended Integer Range) proposal by
adding storage qualifiers for bit/byte ordering and bit/byte
alignment. Ultimately, this proposal should be incorporated
into the SBEIR proposal. The proposal is presented
separately because the feature is conceptually,
semantically, and syntactically separate. The Data
Representation Proposal (REP) might be used in conjunction
with this proposal. The problem this proposal solves is
handling the different ordering and alignment methods for
different implementations.

A common misconception is that these features can be
provided by the programmer: the programmer manually packs
and unpacks data is the desired ordering and alignment.
While the programmer can do this manually, the code becomes
error-prone and non-obvious. For example, the BSD
networking library functions "htonl" (host to network long)
and "htons" (host to network short) are provided to convert
from the native ordering to the network ordering. Many

499

ISO/JTC1/SC22/WG14/N464 Page 2

programmers get this wrong because of conceptual problems
with objects they are manipulating: rather than working with
values, they are now working with values (native form) and
data (twisted values stored in the same kind of container).
This is one area where the compiler can help: mechanically
generating code that is otherwise error prone to generate.
In fact, this is probably one of the primary reasons we use
higher level languages rather than assembler.

BIT/BYTE ORDERING

Some implementations use big endian ordering (highest byte
first), others use little ending ordering (lowest byte
first), while others use mixed ordering. The bit/byte
ordering is only a concern when a program must conform to
externally defined layouts of data structures, e.g., a data
structure intended to be passed over the network or the
command register for a hardware device. It is important to
note that I/0 may be performed in traditional methods (e.g.,
"fread", "fwrite"), via memory-mapped transfer, or shared-
memory among communication systems. In order word, ordering
isn’t just associated "fread" or "fwrite".

The following storage qualifiers are added to specify
ordering:

bigend
littleend

for specifying big endian and little endian. Although there
are other types of orderings, they aren’t widely used for
data interchange among *heterogeneous* systems. For data
interchange, bit orderings are the same as byte orderings,
e.g., big endian means bytes are numbered from starting from
highest order and bit fields are packed from highest order.
These qualifiers only affect how the value is stored, not
the value itself. Thus, programmers think only about values
(reduces programming errors).

The following examples show the use of these extensions.
For the purposes of these examples, assume that "short" is
16 bits, "int" ig 32 :bits; and "long?sis«32 bitsisTheé
appropriate SBEIR types would be used otherwise for
specifying the precision.

The first example shows the use of a IP address and port
number.

struct external rep
bigend long ip address;
bigend short port;

} er;

/* Stores IP address "12.34.56.78". * /
er.ip address = (((12L<<8)+34L)<<8+56L)<<8+78L;

SEY

ISO/JTC1/SC22/WG14/N464 Page 3

er.port = 13;
write (fd, &er, sizeof er);

The second example shows the use of bit ordering to layout
the contents of an IP packet.

struct ip_ packet

bigend int version:4;

bigend int IHL:4

bigend int type of service:8;
bigend int total length:16;
bigend int identification:16;
bigend int flags:4;

bigend int fragment offset:4;
bigend int time to Tive:8;
bigend int protocol:8;

bigend int header checksum:16;
bigend int source_ ip address;
bigend int destination_ip_ address;
bigend int options:24;

bigend int padding:8;

}i

Within a structure all bit orderings must be the same,
otherwise the result is unspecified.

BIT/BYTE ALIGNMENT

Alignment concerns the storage alignment of objects and bit
fields. Alignment control is used for two purposes: data
interchange and performance. For data interchange, a
programmer-specified alignment provides a well-known layout
regardless of how the implementation normally aligns members
of, say, a structure. Other uses for alignment are for
performance reasons. An alignment of 1 gives the smallest
packing of data. An alignment of 8 (on a 64-bit machine
with 8-bit bytes) might give faster access because of word
alignment.

The alignment is specified with the storage qualifier:
align:N

where N is a compile-time constant. If there is no
alignment specification, the object is aligned natively,
i.e., current alignment rules. An alignment of N (for N>0)
means that the object should be aligned in a memory address
that is a multiple of N. Although powers of 2 are commonly
used for alignment, on implementations that use 3 bytes per
word (e.g., a 24-bit implementation), it might be useful to
use an alignment of 3 or 6.

For objects within structures, the alignment (i.e., a

multiple of N) refers to the byte offset within the
structure, not the memory address of that element.

Se/

ISO/JTCl/SC22/WG14/N464 Page 4

An alignment of 0 is used in structure bit fields: each bit
field must be adjacent to the next bit field with no
‘‘holes’’ -- even if the bit field is split across ‘‘word’’
boundaries.

SUMMARY
This proposal incorporates the following changes:

1. Adding the storage qualifiers "bigend",
"littleend", "align:N".

2. Requires the implementation to generate
reordering code when reading or writing a value of
that has a non-native ordering. '

3. Requires the implementation to organize bit
fields in a particular order if an ordering is
specified.

4. Requires the implementation to align objects if
an alignment is specified.

5. Requires the implementation to align structure
members 1f an alignment is specified.

6. For bit fields with an alignment of 0, requires
the implementation to pack bit fields even though
they may cross word boundaries.

Sez

