ISO/JTC1/SC22/WG14/N463 Page 1

From: Frank Farance

Organization: Farance Inc.

Telephone: +1 212 486 4700

Fax: +1 212 759 1605

E-mail: frankefarance.com

Date: 1995-08-25

Document Number: WG14/N463 X3J11/95-064

Subject: Impact of adding WGll’s LIA-1, LID, and LIPC features.

OVERVIEW
BACKGROUND INFORMATION
LIA-1

LID

LIPC

Other Standards
C9X Activities
SUMMARY OF FEATURES
LIA-1

LID

LIPC

CONCLUSIONS

WNR Ul WwN R

1. OVERVIEW

The paper investigates the possibility of providing C
bindings to the following language independent standards:

- ISO 10967-1, '‘‘Information technology -- Language
independent arithmetic -- Part 1: Integer and
floating point arithmetic’’ (LIA-1).

- ISO DIS 11404, ‘‘Information technology --
Language independent datatypes’’ (LID).

- ISO DIS 13886, ‘‘Information technology --
Language independent procedure calling’’ (LIPC).

This paper explores the goals, purpose, and feasibility of
providing these features in C9X.

2. BACKGROUND INFORMATION

These standards were developed by ISO JTC1/SC22/WGll. The
U.S. TAG is X3T2.

2.1 LIA-1

X3J11l and X3J11l.1 had received several presentations on the
LIA-1 work as it progressed over the years. Originally,
X3J11l and X3J11.1 had little interest in LIA-1 because:

- The paradigm of language independent arithmetic
was inappropriate for C.

473



ISO/JTC1/SC22/WG14/N463 Page 2

- The C binding would require substantial changes to
many C implementations, e.g., requiring exceptions
on integer overflow.

- The C binding wouldn’t be in the ‘‘Spirit of C’’
because the loss of performance was significant.

- X3J1l1l and WG1l4'’'s interests weren’'t well
represented in WG11.

Since then, the LIA-1 has changed in favor of an approach
that is workable among many languages. I believe part of
this success has been developing and providing sample
bindings of LIA-1 to common languages (including C).

242 T

The LID draft standard has not been presented, to my
knowledge, to X3J1l or WG14. X3J11l and WG1l4 have not been
asked to review the DIS nor have they received copies from
X3T2 or WG1l1l.

2i Bt LR

Recently X3J11l has been asked to review the LIPC DIS. To my
knowledge, WG1ll has not asked WG14 for its review. The

X3J11 review has been distributed in the current mailing for o
WG14. h

2.4 Other Standards

The LIPC DIS refers to the RPC standard (ISO 11578) as
another. standard with similar, but slightly divergent

capabilities. To my knowledge, X3J1ll or WG1l4 has not

reviewed the RPC standard.

The IEEE Std 1596.5, ‘‘Shared-data formats optimized for
scalable coherent interface (SCI) processors’’ has been
reviewed informally by WG1l4 with respect to extended integer
range features. :

2.5 (C9X Actiwvities

WG1l4 has several extended integer (SBEIR, "inttypes.h",
BIGINT, OAX, REP) that are related to the LID integer
datatype.

WGl4 has a floating point extensions (FPCE) proposal that is
related to the LID real datatype. The FPCE proposal also
intersects with the LIA-1 standard.

WGl4 has several complex arithmetic proposals that are
related to the LID complex datatype.

WG1l4 has a proposal for adding a boolean datatype, similar
to the LID datatype.

A7



ISO/JTC1/SC22/WG14/N463 Page 3

WG1l4 has a proposal for adding class-like features to C9X.
Although many of the LID datatypes could be implemented via
a class mechanism, the missing component in C9X (and C++) is
a convenient mechanism for extending the promotion rules.
In C++, this is implemented by operator overloading
(itemized each promotion). The C++ approach is impractical
for adding these promotions because either all the
promotions must be itemized (1000’s of them) or the
implementation promotes to the largest type (a performance
hog) . Thus, the C++ approach is not within the repirit of
CII. [?

WG1l4 has had some discussion on characters, extended
characters, extended identifiers, wide characters, and so
on. This discussion relates to the LID character datatype.

3. SUMMARY OF FEATURES
3.1 LIA-1

This standard specifies characteristics of arithmetic
operations that are language independent. This standard
does not specify the operands of the operators. Each
language that binds to LIA-1 must provide a mechanism for
accessing certain operators and the documentation describing
certain characteristics of these operations.

This standard provides a sample C binding in its annexes.
The WG14 document N461 ‘‘C Binding of ISO 10967-1 (LIA-1)’’
proposes to incorporate this feature into C9X.

In summary, providing an LIA-1 binding to C is relatively
easy because it adds a header, a couple functions, and a
requirement for documenting the arithmetic operators and
features. LIA-1 doesn’t change the behavior of C programs.

3.2 LID

This DIS specifies several datatype and datatype generation
mechanisms. Each is described by its domain (a set of
acceptable values), its operational properties (e.g.,
integers are: ordered, each, numeric, unbounded), and its
characterizing operations (methods in object-oriented
terminology) .

The following datatypes are specified in LID:
Primitive datatypes: boolean, state, enumerated,
character, ordinal, date-and-time, integer,
rational, scaled, real, complex, void.

Subtypes: range, selecting, excluding, extended,
size, explicit subtypes.

Generated datatypes: choice, pointer, procedure.

o 'Y



ISO/JTC1/SC22/WG14/N463 Page 4

Aggregate datatypes: record, set, bag, sequence,
array, table.

Defined datatypes.

One can easily imagine extending C to include these
datatypes (natively) or building class libraries to define
them. Unfortunately, the typing paradigm in the DIS misses
one important point: C programmers choose a type not only
because of its functionality but also because of its
implementation attributes. ~For example, both "char" and
"int" provide integers in the range of 0 to 127, but they
have different implementation characteristics: "char" might
require’ less storage and "int" might provide faster access.
Although the C Standard does not require these
implementation features, choosing the appropriate
*implementation* of a type is a significant aspect of most C
programs.

If LID had considered several implementation variations, it
would have included a discussion of promotion rules.
However, LID requires a single mapping for each datatype.
The following is from subclause 11.2:

For each LI datatype (primitive or generates), the
mapping shall specify whether the LI datatype is
supported by the language (as specified in 11.4),
and if so, identify a single corresponding internal
[i.e., €]l datatype.

Thus, a LID datatype such as ‘‘integers in the range of 0 to
127’' must map into, say, "char" or "int" but not both.
This is impractical for C programming.

Integers aren’t the only example of this problem. Booleans
can be implemented as a 1-bit bit field (smallest, not
addressable), a "char" (smallest, addressable), an "int"
(addressable, possibly not the smallest, possibly faster
than "char"). Similarly the date-and-time type could be
implemented as a "time t" or an ISO 8601 date-time character
array. LID would require its binding to choose one or the
other.

While it may be possible to provide a C binding to LiID;. it
won’t be practical because the binding will include either
the largest ranges (widest applicability, lowest
performance), or the smallest ranges (smallest
applicability, fastest performance), or some average ranges
(not widely applicable, not great performance) . Regardless
of which compromise is chosen, there probably won’t be
widespread use because each binding has its own set of
significant disadvantages.

In summary, the LID DIS has some good ideas, but appears to
be more of an academic approach without recognition of

~N)

O~



ISO/JTC1/SC22/WG14/N463 Page 5

implementation constraints. The LID DIS would benefit by
providing sample bindings to C and other common languages.
The sample Pascal binding is convenient for presenting LID
features, but is not applicable for C (or, say, Fortran)
bindings.

380 LITPE

This DIS specifies a generic model for procedure calling
conventions. The model is based upon a ‘‘client’’ calling a
‘‘server’’. The model seems applicable to many programming
languages and remote procedure call systems.

The LIPC model specifies a single procedure calling
convention rather than a suite of calling conventions.
Rather than the programmer choosing lightweight procedure
call (for same process calls) or a heavyweight procedure
call (for remote procedure calls) as necessary, the LIPC
model requires that there be a single implementation of the
language binding. Thus, the programmer gets no choice of
implementations. The lightweight implementation performs
well, but doesn’t handle all the exceptions (e.g., network
failure). The heavyweight implementation is robust, but
performs poorly and requires much more programming overhead.
Neither approach is the right one, yet the LIPC binding must
choose one.

In summary, a C binding of LIPC won’t be widely used for the
same reasons of LID: the paradigm does not acknowledge
varying implementations and their attributes. See WG14
document N462 ‘'‘'X3J11 Review of ISO DIS 13886’’ for more
details of the LIPC DIS. Like LID, LIPC could benefit by
providing sample bindings to C.

4. CONCLUSIONS

The LIA-1 standard should be included in C9X. This binding
is low cost for implementations and doesn’t affect C
programs.

The LID paradigm is infeasible for C9X. Given the timetable
of C9X, it is unlikely that LID will be improved before the
cutoff for new proposals. I recommend that we postpone the
development of a C binding to LID until we see a binding
more hospitable to the C type system and existing
programming styles.

Some of the LIPC problems could be addressed within the
timetable of C9X. Unfortunately, LIPC is dependent upon LID
datatypes for its interface definition, so even if LIPC were
fixed, LIPC couldn’t be included until LID was fixed. Thus,
I recommend against the inclusion of LIPC until these
problems have been solved.

WG1l4 and X3J11l should have better communication with WG11
and X3T2. It is unfortunate that the LID and LIPC efforts

77



ISO/JTC1/SC22/WG14/N463 Page 6

have reached DIS will little input from the C community.
Since C and its variants are probably the most widely used
programming languages for systems programming, WG1ll and X3T2
should be more sympathetic to C needs.

493



