—~

Farance Inc.

dosutieat: C Binding of ISO 10967 (LIA-1) date: 1995-08-25
WG14/N461 X3J11/95-062

fl: language-independent/lia-1.* fom: Frank Farance

+1 212 486 4700
frank @farance.com

William Rugolsky, Jr.
+1 212 486 4700
rugolsky @farance.com

ABSTRACT

This is a preliminary proposal for the inclusion of a C binding of language indepen-
dent arithmetic (LIA-1) as defined in ISO 10967-1:1994. LIA-1 specifies a parameter-
ized model of arithmetic computation. The purpose of LIA-1 is to provide a known
environment in conforming implementations across platforms and languages for appli-
cations requiring numeric computation. Overall, the C binding of LIA-1 doesn’t affect
existing programs but new programs will achieve a higher degree of portability on
LIA-1 systems. The impact of the changes are: adding some macros, adding a handful
of library functions, and requiring the implementation to document certain features of
its arithmetic. This proposal is in the early stages of development. It is intended to
foster discussion of these features. Assuming that there is interest in this proposal, the
next revision will include detailed standards wording.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 0

477

CONTENTS

[y

1. PROBLEM STATEMENT .
2. LIA-1 OVERVIEW

3. IMPACT TO STANDARD C : -
3.1 . Language Independent Arithmetic <lia. h> ‘
3.1.1 Boolean Type
3.1.2 Integral Types g ‘
3.1.2.1 LIA-1 Parameters
3.1.2.2 LIA-1 Operations .
3.1.3 Floating Types soi 4
3.1.3.1 LIA-1 Parameters
3.1.3.2 LIA-1 Rounding Styles
3.1.3.3 LIA-1 Operations .
3.1.3.4 LIA-1 Indicators
3.1.4 Type Conversions
3.1.5 Outstanding Issues

4. CONCLUSIONS

=R\ ele BRI e e MY, IV V.V T T,)

—
(=

“4R0

1.

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

PROBLEM STATEMENT

The following issues draw interest in including a C binding of LIA-1.

1995-08-25 Draft 1 Farance & Rugolsky

There is a need for a common model of arithmetic for homogeneous and hetero-
geneous systems.

A parameterized model allows adaptability across implementations. The C arith-
metic model (<limits.h>) is parameterized somewhat, but the C arithmetic
model has primarily been influenced by C implementations.

LIA-1 provides more general arithmetic model.

A better defined model would allow more portable numeric computation applica-
tions.

WG14 should provide language independent features that other languages will be
providing, i.e., direction from SC22.

REVIEW COPY Page 1

48/

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

2. LIA-1 OVERVIEW

The following excerpt is taken from the Introduction in LIA-1.

The Aims :

Programmers writing programs that perform a significant amount of numeric process-
ing have often not been certain how a program will perform when run under a given
language processor. Programming language standards have traditionally been some-
what weak in the area of numeric processing, seldom providing an adequate
specification of the properties of arithmetic data types, particularly floating point
numbers. Often they do not even require much in the way of documentation of the
actual arithmetic data types by a conforming language processor.

It is the intent of this part of ISO/IEC 10967 to help to redress these shortcomings, by
setting out precise definitions of integer and floating point data types, and requirements
for documentation. This is done in a way that makes as few presumptions as possible
about the underlying machine architectures.

It is not claimed that this part of ISO/IEC 10967 will ensure complete certain of arith-
metic behavior in all circumstances; the complexity of numeric software and the
difficulties of analysing and proving algorithms are too great for that to be attempted.
Rather, the requirements set forth here will prov1de a firmer basis that hitherto for
attempting such analysis.

Hence the first aim of this part of ISO/IEC 10967 is to enhance the predictability and
reliability of the behavior of programs performing numeric processing.

The second aim, which helps to support the first, is to help programming language
standards to express the semantics of arithmetic data types. These semantics need to
be precise enough for numeric analysis, but not so restrictive as to prevent efficient
implementation of the language on a wide range of platforms.

The third aim is to help enhance the portability of programs that perform numeric pro-
cessing across a range of different platforms. Improved predictability of behavior will
aid programs designing code intended to run on multiple platforms, and will help in
predicting what will happen when such a program is moved from one conforming
language processor to another.

Note that this part of ISO/IEC 10967 does not attempt to ensure bit-fot-bit identical
results when programs are transferred between language processors, or translated from
one language into another. Programming languages and platforms are too diverse to
make that a sensible goal. However, experience shows that diverse numeric environ-
ments can yield comparable results under most circumstances, and that with careful
program design significant portability is actually achievable.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 2

482

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

The Content

This part of ISO/IEC 10967 defines the fundamental properties of integer and floating
point numbers. These properties are presented in terms of a parameterized model.
The parameters allow enough variation in the model so that most platforms are
covered, but when a particular set of parameter values is selected, and all required
documentation is supplied, the resulting information should be precise enough to per-
mit careful numerical analysis.

The requirements of this part of ISO/IEC 10967 cover three areas. First, the program-
mer must be given runtime access to the parameters and functions that describe the
arithmetic properties of the platform. Second, the executing program must be notified
when proper results cannot be returned (e.g., when a computed result is out of range or
undefined). Third, the numeric properties of conforming platforms must be publicly
documented.

The part of ISO/IEC 10967 focuses on the classical integer and floating point data
types. Later parts will consider common mathematical procedures (part 2), complex
numbers (part 3), and possibly additional arithmetic types such as fixed point.

Relationship to Hardware

ISO/IEC 10967 is not a hardware architecture standard. It makes no sense to talk
about an ‘‘LIA machine’’. Future platforms are expected either to duplicate existing
architectures, or to satisfy high quality architecture standards such as IEC 559 (also
known as IEEE 754). The floating point requirements of this part of ISO/IEC 10967
are compatible with (and enhance) IEC 559.

This part of ISO/IEC 10967 provides a bridge between the abstract view provided by a
programming language standard and the precise details of the actual arithmetic imple-
mentation.

The Benefits

Adoption and proper use of this part of ISO/IEC 10967 can lead to the following
benefits.

Language standards will be able to define their arithmetic semantics more precisely
without preventing the efficient implementation of their language on a wide range of
machine architectures.

Programmers of numeric software will be able to assess the portability of their pro-
grams in advance. Programmers will be able to trade off program design requirements
for portability in the resulting program.

Programs will be able to determine (at run time) the crucial numerical properties of
the implementation. They will be able to reject unsuitable implementations, and (pos-
sibly) to correctly characterize the accuracy of their own results. Programs will be
able to extract apparently implementation dependent data (such as the exponent of a
floating point number) in an implementation independent way. Programs will be able
to detect (and possibly correct for) exceptions in arithmetic processing.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 3

%455

C Binding of ISO 10967-1 (LIA-1) — WGI14/N461 X3J11/95-062

End users will find it easier to determine whether a (properly documented) application
program is likely to execute satisfactorily on their platform. The can be done by com-
paring the documented requirements of the program against the documented properties
of the platform.

Finally, end users of numeric applications packages will be able to rely on the correct
execution of those packages. That is, for correctly programmed algorithms, the results
are reliable if and only if there is no notification.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 4

ot

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

3. IMPACT TO STANDARD C

This section provides an rough draft of the wording that would be added to the Stan-
dard to support LIA-1. The definitions of the parameters (e.g., INT_MODULO) have
been omitted for the sake of clarity at this phase of review: most of the definitions are
obvious or defined in LIA-1. Of course, the definitions would be included in future
proposals and in the final Standards wording.

The following wording would be added to the Standard:
3.1 Language Independent Arithmetic <lia.h>

An implementation shall conform to all the requirements of LIA-1 (ISO 10967-1:1994)
unless otherwise specified in this clause.

NOTE: The operations or parameters marked 1 are not part of Standard C and are
enhancements required by LIA-1.

3.1.1 Boolean Type

The LIA-1 data type Boolean is implemented in the C data type int (1 == true and 0
== false).

3.1.2 Integral Types

The integral types int, long, unsigned int, and unsigned long conform
to LIA-1.

NOTE: The conformity of short and char (signed or unsigned) is not relevant
since values of these types are promoted to int (signed or unsigned) before computa-
tions are done.

3.1.2.1 LIA-1 Parameters
The parameters for the LIA-1 integer data types can be accessed by the following:

maxint INT_MAX, LONG_MAX, UINT_MAX, ULONG_MAX.
minint INT_MIN, LONG_MIN.
modulo INT MODULOY, LONG_MODULOT.

The parameter bounded is always true, and is not provided. The parameter minint is
always O for the unsigned types, and is not provided for those types. The parameter
modulo is always true for the unsigned types, and is not provided for those types.

3.1.2.2 LIA-1 Operations

The integer operations are the following:

addl X + V.
subl 3O
mull A
1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 5

485

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

divl Xl

reml XK oY

modal modulo (x,y) T, 1lmodulo (x,y)T.
modpl No binding.

negl - X

absl abs (x), labs(x).
signl sgn(x) T, lsgn(x)7.
eql X == y.

neql X = y.

IssI -V

legl X == Y

gtrl Xy >ay.

geql b T T

where x and y are expressions of the same integral type.

The C Standard permits divl and reml (/ and %) to be implemented using either
round toward minus infinity (divfT) or toward zero (divtl/remtI). The implementation
shall choose the same rounding for both and document the choice.

3.1.3 Floating Types
The floating types float, double, and long double conform to LIA-1.
3.1.3.1 LIA-1 Parameters

The parameters for a floating point data type can be accessed by the following:

r FLT_RADIX.

D FLT_MANT_DIG, DBL_MANT DIG, LDBL_MANT DIG.
emax FLT_MAX EXP, DBL_MAX_EXP, LDGL_MAX_ EXP.
emin FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
denorm FLT_DENORMfY, DBL_DENORMf, LDBL_DENORMfY.
iec_559 FLT_IEC_559f, DBL_IEC_559f, LDBL_IEC_5597.

The *_DENORM macros and *_IEC_559 macros represent booleans and have values
1 or 0.

The derived constants for the floating types are accessed by the following:

Jfmax ‘ FLT_MAX, DBL_MAX, LDBL_MAX.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 6 174 8 é

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

fminN FLT__MIN,' DBL_MIN, LDBL_MIN.

fmin FLT_TRUE_MIN{, DBL_TRUE_MINY}, LDBL_TRUE_MINY.
epsilon FLT_EPSILONY, DBL_EPSILONY{, LDBL_EPSILONT.
rmd_error FLT_RND_ERRT, DBL_RND_ERRT, LDGL_RND_ERRFT.
rmd_style FLT_ROUNDS.

3.1.3.2 LIA-1 Rounding Styles

The C Standard requires all floating types use the same radix and rounding style, so
that only one identifier for each is provided in the LIA-1 binding.

The FLT_ROUNDS parameter corresponds to the LIA-1 rounding styles:

truncate FLT_ROUNDS == 0.
nearest FLT_ROUNDS ==
other FLT_ROUNDS != 0 && FLT_ROUNDS != 1.

NOTE: — The definition of FLT_ROUNDS has been extended to cover the rounding
style used in all LIA-1 operations, not just addition.

3.1.3.3 LIA-1 Operations

The floating point operations are:

addF X + V.

subF X - V.

mulF o, '

divF) S V2

negF - X

absF fabsf (x) T, fabs(x), fabsl(x)fT.

signF fsgnf(x)7f, fsgn(x){, f£sgnl (x)t.

exponentF exponf (x) T, expon (x)f, exponl (x) 7.

fractionF fractf (x)f, fract(x)f, fractl (x)f.

scaleF scalef(x,n)f, scale(x,n)f, scalel(x,n)T.

succF succf (x)f, succ(x)7, succl (x)T.

predF predf (x) T, pred(x) T, precl (x)T.

ulpF ulpf(x)7f, ulp(x)f, ulpl(x)f.

truncF trunctof (x,n)f, truncto(x,n)¥f, trunctol (x,n)T.
1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 7

Sa7

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

roundF roundtof (x,n){, roundto(x,n){, roundtol (x,n) T.
intpartF Anbprif(x) i dntprt(x)d; intprtl.(x)

fractpartF freprtfian T, Lfropet (%) freprtl.(38) T

eqF X ==.Y.

negF X = y.

IssF A,

legF X <% N

gtrF x > v

geqF HBE 3

where x and y are expressions of the same floating point type, and n is of type
int.

NOTE: scaleF can be computed using the ldexp library function, only if

FLT_RADIX==2.

NOTE: The Standard C function frexp differs from exponentF in that no notification
is raised when the argument is O.

3.1.3.4 LIA-1 Indicators

The following indicators shall be provided a one method of notification (see LIA-1
subclause 6.1.2). .

integer_overflow
floating_overflow
underflow
undefined

INT_OVERFLOWT.
FLT_OVERFLOWT.
UNDERFLOWT.
UNDEFINEDfT.

The values representing individual indicators shall be distinct non-negative powers of
two. The empty set is denoted by 0. Other indicator subsets are named by combin-
ing individual indicators using bit-or. For example, the LIA-1 indicator subset
{floating_overflow, underflow, integer_overflow}
would be denoted by the expression
FLT_OVERFLOW | UNDERFLOW | INT_OVERFLOW
The indicator interrogation and manipulation operations are:
set_indicators set_indicators(i)f.
clear_indicators clear_ indicators(i)f.

test_indicators test_indicators(i)f.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 8

)

~K
83}
an

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

current_indicators current_indicators () f.

where i is an expression of type unsigned int representing an LIA-1 indicator
subset.

The implementation shall provide an alternative of notification through termination
with a ‘‘hard-to-ignore’’ message (see LIA-1 subclause 6.1.3).

3.1.4 Type Conversions
LIA-1 operations shall be provided in all floating types.

The LIA-1 type conversions are the following type casts:

cvtF—-I1 (Ink)rxga (ong):s xyuunsigned:iint) L Xjsixfunsigned
long) =x.

cvtl’'—=1 (int) x, (long) x, (unsigned int) X, (unsigned
long) x.

cvtl-F (float) x, (double) x, (long double) x.

cVtF’—=F (float) x, (double) x, (long double) x.

3.1.5 Outstanding Issues

The C Standard requires that float to integer conversions round toward zero. An
implementation that wishes to conform to LIA-1 must use round to nearest for conver-
sions to a floating point type.

1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 9

487

C Binding of ISO 10967-1 (LIA-1) — WG14/N461 X3J11/95-062

4. CONCLUSIONS

The LIA-1 features should be included in C9X. The following are the steps to formal
inclusion in C9X.

1. Review of this paper.
2. Receive comments on the general features of LIA-1.
3. Receive comments on specific features of the C binding.
4. Receive comments on the ability of members’ implementations to conform to
the C binding.
5. Provide detailed definition of new macros and functions required by LIA-1.
6. Review of detailed version of this paper.
1995-08-25 Draft 1 Farance & Rugolsky REVIEW COPY Page 10

%70

