R
Farance Inc. W6/ ‘//f/ AR
XJJ///?J“-%(

subject: Specification-Based Extended Integer date: 1995-08-25
Range, Revision 3 (5.1)
documen: WG 14/N459 X3J11/95-060 from: Frank Farance

fl: c9x/extended-integers/sbeir.* +1 212 486 4700
frank@farance.com
William Rugolsky, Jr.
+1 212 486 4700
rugolsky@farance.com

ABSTRACT

This proposal extends the C language notion of integral types to a wider range of
hardware architectures, notably 64-bit and 128-bit applications. Many programmers
have had problems porting existing 32-bit code to 64-bit systems. The heart of the
problem lies in the limited numt.: of integral types in C (char, short, int and
long), and the assumptions pro...mmers have made about these types. Our solution
is to make explicit the three i.._.:icit features that programmers assume: precision
(number of bits), exactness of p. ..ision (are exactly N bits required or at least N bits),
and performance (optimize for time or space). Rather than forcing the programmer
into the four traditional integer types (with varying performance and precision across
architectures), this proposal improves portability by allowing programmers to specify
needs (clarifying their intent) and the compiler vendor to provide the best implementa-
tion of those needs. An additional benefit is that the extension is easy to implement in
many compilers. This proposal only concerns additional range — bit/byte ordering
and alignment and data representation are outside the scope of this proposal.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 0

428

CONTENTS

1. PROBLEM STATEMENT .

1.1

1.2

1.3

14

1.5

2.1

2.2

23

Bl
52

4.1
4.2
4.3

Attributes of Integer Types .
1.1 .Exact.Semantics
1.1.2 At-Least Semantics

1.1.3 Specified Precision

1.1.4 Actual Precision aels
Conformance Level and Style . .
1.2.1 Exactness vs. Conformance Style

1.2.2 Extending Minimalist Style Programs .
1.2.3 Extending Adaptive Style Programs

Determining The Correct Integer Type
1.3.1 Algorithm for Standard C

1.3.2 Algorithm for Kwan Proposal
1.3.3 Algorithm For This Proposal
The Problem To FiX ..o o6 301 ice
1.4.1 Porting Problems .

1.4.1.1 16-Bit vs. 32-Bit Systems .
1.4.1.2 32-Bit vs. 64-Bit Systems .

1.4.1.3 Solving The Same Problem Again

1.4.2 Loss of Information .
1.4.2.1 Standard C . .
1.4.2.2 Kwan Proposal
1.4.2.3 Other Proposals . . .

1.4.3 Minimizing Preprocessor Tricks

1.4.4 Limited Precision . ’

1.4.5 Class Libraries Are Impracucal

SWRMARY.. wisls 3e smics 9 shiehin s

TYEE SYSTENL e oo v

Conceptual Model
Proposed Semantics .
2.2.1 Type Attributes
2.2.2 Promotion Rules
2.2.3 Existing C Types
Proposed Syntax

SUPPORTING SERVICES .

precof Operator
EIR_* Macros .

LIBRARY SERVICES

printf Yo il .
SRRl i e PRt e M b
strtoint

COANABERRWRNNRN M - -

5. CHANGES TO STANDARD C
5.1 Types
5.2 Integer constants

5.3 Signed and unsigned 1ntegers
5.4 Usual arithmetic conversions

5.5 Unary arithmetic operators

5.6 The precof operator
5.7 Bitwise shift operators
5.8 Type specifiers .

5.9 Extended Integer Range <std1nt h>

5.10 The fprintf function
5.11 The fscanf function
5.12 The strtoint function

6. ISSUES AND RESOLUTION .

6.1 Resolved Issues
6.2 Open Issues

e

27
27
27
27
27
28
29
29
29
31
32
32
33

34
34
34

<L

<7

428

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

1. PROBLEM STATEMENT

The type model employed by the ANSI/ISO C Standard reflects the language’s roots in
systems programming. By minimally specifying the precision and semantics of the
numeric types, the language has been efficiently mapped onto the native types pro-
vided by a wide variety of machine architectures.

1.1 Attributes of Integer Types

All applications make explicit and implicit assumptions about integral types. These
assumptions are characterize in the following attributes.

- Signedness. Is the type unsigned or signed?
« Specified precision. The precision required, i.e., N bits.

« Exactness of precision. Whether the type provides exactly the specified precision
(hereafter referred to as exact semantics), or at least that precision (hereafter
referred to as at-least semantics).

« Actual precision. The available precision.

« Performance. Whether the representation is optimized for space or time.
« Range. The range of acceptable values.

- Non-participating bits. Any ‘‘holes’’ in the representation of the value.

In the context of this proposal, ‘‘precision’’ means the number of bits that participate
in the value. For unsigned integers, an N-bit integer stores values in the range of 0 to
((2**N)-1). For signed integers, the range includes the values -((2**(N-1))-1) to
((2**(N-1))-1).

1.1.1 Exact Semantics

An exact type is one that has exactly N bits that participate in its value. The type
may consume storage larger than N bits (e.g., to pad to a convenient byte or word
boundary), but the remaining storage does not participate (holes) in the value. For
example, a type of exactly 24 bits might be implemented as 3 8-bit bytes or as 32-bit
word with the necessary bit mask operations.

In C terminology, an exact type of N bits is equivalent to a structure containing a bit
field of N bits. Unlike structure bit fields, eact types may have the address-of operator
(&) and the sizeof operator applied to the exact type objects.

1.1.2 At-Least Semantics

A type that has ar least N bits that participate in its value. The type may consume
storage larger than N bits for padding, but some storage might not participate in the
value. For example, consider a system with 24-bit words and the double-word value
has 47 bits that participate in value (48 bits of storage with a 1-bit hole). On this sys-
tem, a type of at least 32 might be implemented as a 32-bit number with bit masks (ar
least 32 bits specified precision, 32 bits actual precision, and 16 non-participating

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 1

429

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

bits). Another possible implementation is to use the 47-bit double-word value (ar least
32 bits specified precision, 47 bits actual precision, and 1 non-participating bit).

1.1.3 Specified Precision

When specifying an integer type, the program specifies how much precision it needs in
bits (N). The exactness attribute determines whether N is interpreted as an exact
specification or a minimum specification.

1.1.4 Actual Precision

Although N bits may be specified for an at-least type, M may be available (M >= N)
for use. For example, an integer type of at least 16 bits (specified precision) may be
implemented as 32 bits (actual precision) on a 32-bit architecture.

For exact types, the actual precision is always the same as the specified precision.
1.2 Conformance Level and Style

Standard C has two levels of conformance with respect to programs running in a
hosted environment.

« Strictly conforming program. The program ‘‘shall not produce output dependent
on any unspecified, undefined, or implementation-defined behavior, and shall not
exceed any minimum implementation limit’’,

+ Conforming program. ‘‘Conforming programs may depend upon nonportable
features of a conforming implementation”’. The standard header <limits.h> is
used to determine the maximum usable precision and range.

These two levels of conformance produce two styles of coding:

* Minimalist style. This coding style uses integer precision, range, operations, and
values that are the same across all implementations. In other words, this style
makes no assumptions about implementation limits.

- Adaptive style. This coding style adapts the program to the capabilities of the
implementation.

For example, the program:

main ()

{
printf("%d\n", INT_MAX-INT MAX);
exit (0);

is a strictly conforming program: its output remains the same regardless of implemen-
tation. However, the program isn’t in a minimalist style because some of the values it
uses (e.g., INT_MAX) are dependent upon the implementation limits.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 2

430

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

NOTE: Minimalist style and adaptive style aren’t terms in the C Standard. These
styles can apply to programs or program fragments.

1.2.1 Exactness vs. Conformance Style

A common misconception is that minimalist programs use exact semantics, while
adaptive programs use at-least semantics. Exactness is a separate concept from con-
formance style. The following examples show the distinction.

Example #1: Minimalist Style and Exact Type

A minimalist style program can use an exact type to get precise arithmetic semantics,
e.g., bit shift for calculating a CRC checksum. In Standard C, an unsigned bit
field, could be used for this purpose. Standard C has the limitations:

+ Only up to 16 bits can be used portably.
 There are no pointers to bit fields.

« Performance attributes cannot be specified. register is not possible in a
struct (optimizing for time). The pack pragma is not standardized (optimizing
for space).

Example #2: Minimalist Style and At-Least Type
A minimalist style program can use an at-least type when:

« Portable bit-shift operations are not required. Bit shifting unsigned integers can
produce different results on machines with different precision, e.g.,
(0X7FFF<<2)>>2. The Standard C integral types, char, short, int,
long, may be used as long as their minimum precision (8, 16, 16, 32 bits) is not
exceeded. Most programs assume that of the 16-bit types, short is the smaller
of the two and int is the faster of the two.

« Portable bit-shift operations and more than 16 (but not more than 32) bits of preci-
sion are required. A minimalist style program must use an unsigned long
with each operation bracketed bit masks to clear any excess bits. This simulates
an exact type for up to 32 bits. sy

« The address-of & operator must be applied to the value. In Standard C, there are
no pointers to exact types (i.e., bit fields), so an at-least type must be used.

There are no minimalist style programs (or strictly conforming programs) that use
more than 32 bits (exact or at-least) precision.

Example #3: Adaptive Style and Exact Type
Using right bit-shift operations on a bit-field.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 3

A3

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

Example #4: Adaptive Style and At-Least Type

Using any extra available precision outside the minimum specified precision, e.g.,
using more than 16 bits of an int on systems that have 32-bit int’s.

Using right bit-shift operations on any signed integer type.
1.2.2 Extending Minimalist Style Programs

The following features are required for extending precision of minimalist style pro-
grams.

- Providing exact types with precision greater than 16 bits.

« Providing pointer semantics (i.e., applying the address-of & operator) to exact
types.
« Providing at-least types with precision greater than 32 bits.

« Providing a simpler paradigm for selecting the correct type (see below).
« Providing support for printf, scanf, and strtod families of functions.

+ Providing a consistent, easy-to-understand promotion rules with respect to specified
precision.

1.2.3 Extending Adaptive Style Programs

The following features are required for extending precision for adaptive style pro-
grams.

« Providing performance attributes (fast and small).
« Providing MIN and MAX macros for arbitrary types.

« Providing a consistent, easy-to-understand promotion rules with respect to actual
precision.

1.3 Determining The Correct Integer Type

With any type system, the programmer must make a choice of which type to use. The
following information must be known prior to choosing a type:

« Specified precision — N bits.

« Actual precision of the available types (e.g., char, short, int, long) in the
implementation.

« Exactness of precision — exact or at-least semantics.
« Performance attributes — optimized for space, time, or neither.

« Conformance style. Will the program use the type in a minimalist or an adaptive
style?

Addressability. Must the program create a pointer to the type?

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 4

232

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

The algorithm for determining the correct type can be:

+ Known by the programmer. In this case, the programmer chooses a type that is
expected to be portable (minimalist or adaptive, as desired) across all implementa-
tions. The programmer then ‘‘hard codes” the type name into the program.

+ Embedded in the preprocessor directives in the program. Here, preprocessor direc-
tives inquire, examine, and determine the nature of some of the basic C types.

* Determined in a separate pass. A tiny, experiment program is compiled and run to
determine the appropriate types for the application program. The experiment pro-
gram generates a header which defines the appropriate types for the application.

There are several disadvantages to these methods. Rarely do programmers document
their intent within the code.

/%
* Code for some 32-bit implementation.
*
* Programmers RARELY document the intention of the type.
* Programmers, more often, document the purpose of the
* variable.
ot §

int a; /* signed fastest int at least 16 bits */

short b; /* signed smallest int at least 16 bit */

int c; /* signed int at least 16 bits */

int d; /* signed int exactly 16 bits */

int e; /* signed fastest int at least 32 bits */

int f; /* signed int exactly 32 bits */

4

In fact, most programmers believe that the type they chose documents itself. Since
there are roughly 23 scenarios (see below) in Standard C than map into 5 “‘types”
(char, short, int, long, and bit fields), it is impossible that the ‘‘type’’ docu-
ments the intent of the programmer.

Even good programmers that document intent still have problems because they must
map their intent (precision, conformance style, performance, addressability) — hun-
dreds of possibilities — into the 5 ‘‘types’’. The mapping of type intents to the 5
“‘types’’ varies from machine to machine. Even good programmers will have to make
manual changes as they port code from machine to machine.

The preprocessor approach can become especially complex for conforming programs if
any performance attributes (e.g., smallest storage) are required to be determined at
preprocessor time. The preprocessor cannot inquire about any type (e.g., its size)
defined with typedef because type definition is performed at a later phase in pro-
gram translation.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 5

433

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

Because the preprocessor translation phase is before type definition, some program-
mers solve the problem by writing an experiment program (see above). However, it is
not possible run an experiment program when the execution environment is different
from the translation environment.

Regardless, any of these methods to determine the correct type can be described by the
following algorithms. These algorithms demonstrate what is performed by the pro-
grammer, the preprocessor, or an experiment program.

1.3.1 Algorithm for Standard C

The following algorithm is used for Standard C to determine the correct type for a
program. The type-determination parameters (specified precision, actual precision of
available types, exactness, performance, conformance, addressability — see above) are
the inputs to this algorithm. The algorithm emits one of five ‘‘types’’ (char,
short, int, long, and bit fields) as the correct ‘‘type’’. To simplify the presenta-
tion of this algorithm, the signedness is not included. The programmer would prepend
unsigned or signed as appropriate.

« If the program is strictly conforming, then:
— If an exact type is required:
A. If the specified precision is <= 16, then:
a. If address-of & operator will be used:
 Scenario #1. Use unsigned int with bit masks.
b. Otherwise:
 Scenario #2. Use unsigned bit field.
B. Otherwise, if the specified precision is <= 32, then:
« Scenario #3. Use unsigned long with bit masks.
C. Otherwise:
« Not possible directly with C types.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 6

At

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

— Otherwise, it must be an at-least type:
A. If the specified precision is <= 8, then:
« Scenario #4. Use some char type.
B. Otherwise, if the specified precision is <= 16, then:
a. If optimizing for space (smallest storage), then:
« Scenario #5. Use some short type.
b. Otherwise, if optimizing for time (fastest operations), then:
« Scenario #6. Use some int type.
c. Otherwise, if optimizing for space and time:
« Not possible with C types.
d. Otherwise:
« Scenario #7. Use some int type.
C. Otherwise, if the specified precision is <= 32, then:
» Scenario #8. Use some long type.
D. Otherwise:
« Not possible directly with C types.
« Otherwise, the program must be conforming:
— If an exact type is required, then:
A. If the specified precision == the actual precision of char, then:
+ Scenario #9. Use some char type.
B. If the specified precision == the actual precision of short, then:
« Scenario #10. Use some short type.
C. If the specified precision == the actual precision of int, then:
« Scenario #11. Use some int type.
D. If the specified precision == the actual precision of 1long, then:
+ Scenario #12. Use some long type.
E. If the specified precision <= the actual precision of int, then:
a. If address-of & operator will be used:
+ Scenario #13. Use unsigned int with bit masks.
b. Otherwise:

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 7

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

« Scenario #14. Use unsigned int bit field.
F. If the specified precision <= the actual precision of long, then:
« Scenario #15. Use unsigned long with bit masks.
G. Otherwise:
+ Not possible directly with C types.
— Otherwise, it must be an at-least type:
A. If optimizing for space (smallest storage), then:
a. If the specified precision <= the actual precision of char, then:
* Scenario #16. Use some char type.

b. Otherwise, if the specified precision <= the actual precision of
short, then:

« Scenario #17. Use some short type.

c. Otherwise, if the specified precision <= the actual precision of
int, then:

- Scenario #18. Use some int type.

d. Otherwise, if the specified precision <= the actual precision of =y
long, then:

« Scenario #19. Use some long type.
e. Otherwise:
« Not possible directly with C types.
B. If optimizing for time (fastest operations), then:
a. If the specified precision <= the actual precision of int, then:
* Scenario #20. Use some int type.

b. Otherwise, if the specified precision <= the actual precision of
long, then:

« Scenario #21. Use some long type.
c. Otherwise:
« Not possible directly with C types.
C. If optimizing for space and time:
a. Not possible with C types.
D. Otherwise:

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 8

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

a. If the specified precision <= the actual precision of int, then:
« Scenario #22. Use some int type.

b. Otherwise, if the specified precision <= the actual precision of
long, then:

« Scenario #23. Use some long type.
c. Otherwise:
« Not possible directly with C types.
1.3.2 Algorithm for Kwan Proposal

The algorithm for the Kwan Extended Integer Range proposal is basically the same if
64-bit types are excluded. The Kwan types int16_t and int32 t would replace
int and long, in the exact portion of the algorithm. The types int least 8 t,
int_least_16_t, int_least_32 t, would replace char, short, int,
long, in the at-least portion of the algorithm.

The Kwan proposal improves Standard C be eliminating only one scenario (#18). This
leaves 22 scenarios than map into 7 *‘types’ (int8_t, intl6_t, int32_t,
int least 8 t, int least 16 t, int least 32 t, and bit fields). If
64-bit types are included, this adds 7 more scenarios for a total of roughly 29.

In summary, the Kwan proposal doesn’t change much of the methods for determining
the correct type. Still, the programmer, the preprocessor, or an experiment program
must execute this algorithm. With 64-bit types, there are roughly 29 scenarios that
map into 9 “‘types’] .. (intB.t, . iptl6 €, - int32.t,. sinted -t,
int least 8 t, int least 16.t, int.least 32 t,:int least .64 .t,
and bit fields). Regardless, there is still a type-determination algorithm that needs to
be executed that loses information.

1.3.3 Algorithm For This Proposal

The following is the type-determination algorithm an application would use with this
proposal. Note that this algorithm is significantly simpler than the algorithm for Stan-
dard C or the Kwan proposal, and, the algorithm loses no information.

A. Determine signedness of desired type.
1. If the type is signed, then:
« Add signed.
2. Otherwise:
« Add unsigned.
B. Determine performance attributes.

1. If optimizing for space (smallest storage), then:

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 9

v

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

* Add small int.

2. Otherwise, if optimizing for time (fastest operations), then:
+ Add fast int.

3. Otherwise, if optimizing for space and time, then:
» Not possible.

4. Otherwise:
« Add int.

C. Determine exactness of precision.

1. If an exact type is required, then:
+ Add exact.

2. Otherwise, an at-least type is required:
+ Add atleast.

3. Determine the precision required. Add :N where N is the number of bits
required.

The following examples demonstrate the use this approach by defining types that are
similar to standard C types.

typedef unsigned small int atleast:8 Stll "UclHE
typedef signed int atleast:16 std short;
typedef signed fast int atleast:16 std_int;
typedef signed int atleast:32 std long;

NOTE: This proposal does not require this definition for Standard C types — this is a
sample mapping.

1.4 The Problem To Fix

The main problem to fix is not to lose information due to the mapping of type intents
which are mapped into scenarios and finally mapped into “types’’. Another way of
stating this is to match the implementation to what programmer wants.

1.4.1 Porting Problems

The primary motivation for Extended Integer Range is the porting cost (extra cost)
and/or the lack of portable integral types (missing functionality) all while maintain
good performance. Porting problems have existed since the beginning of C. The main
difficulty is determining whether the code is written (or has been written) to minimum
specifications (minimalist style programs) or to take maximum advantage of the
machine (adaptive style programs).

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 10

438

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

The following is a brief history of porting problems.
1.4.1.1 16-Bit vs. 32-Bit Systems

The problems that are occurring now, porting 32-bit code to 64-bit systems, are similar
to the problems of the late 1970’s to early 1980°s when porting code from 16-bit to
32-bit systems. During that time, there was a large body code that assumed an int
was exactly 16 bits. With the UNIX V7 C compiler (for the PDP-11, a 16-bit
machine), the solution was to add the short and long types. This was consistent
with the UNIX V32 C compiler (for the VAX, a 32-bit machine) that shortly followed.

16-Bit Culture

There was a large body of code that assumed an int was 16 bits. There were many
other assumptions (e.g., the size of a pointer is the same size as an int), but they are
not significant to this discussion.

The 32-Bit Porting Problem

Through the early to mid 1980’s, the 32-bit porting issues were: usage of int when
other types were more appropriate, and, assumptions that int would store a pointer
(not true on 16-bit machines with ‘‘far’’ pointers). For each porting issue that was
related to precision, the usage was analyzed to determine the original programmer
intent:

 int is exactly a 16-bit type. In the porting effort, this would have been changed
to short. short is not exactly 16 bits, but all the 16-bit and 32-bit machines
at the time implemented short as 16 bits, so programmers assumed this to be
true.

« int has ar least 16 bits precision, but there were no performance requirements.
This usage was left unchanged.

 int has ar least 16 bits precision, but the usage was optimized for speed. This
usage was left unchanged since int was the fastest type of at least 16 bits on
both 16-bit and 32-bit machines.

« int has at least 16 bits precision, the usage was optimized for (minimum) storage.
In the porting effort, this would have been changed to short because either
assumption: short is exactly 16 bits (wrong), or short is smaller than int
(not exactly right; correct: int is not smaller than short).

« int has exactly 32 bits precision. This problem existed in porting Berkeley UNIX
code (developed on a 32-bit VAX) to 16-bit machines. In the porting effort, this
would have been changed to long, but this is still incorrect. long has at least
32 bits precision, not exactly 32 bits precision. Since most of the machines at the
time implemented long as 32 bits, this was not a problem then.

+ int has ar least 32 bits precision. As above, this problem existed in Berkeley
UNIX. In the porting effort, this would have been changed to long.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 11

)

~0

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

Standards Effort

K&R C first clarified an acceptable coding paradigm. From an early version of K&R
C:

“‘The intent is that short and long should provide different lengths of integers
where practical; int will normally reflect the most ‘‘natural’ size for a particular
machine. ... each compiler is free to interpret short and long as appropriate
for its own hardware. About all you should count on is that short is no longer
than long.”

The ANSI C Standard clarified this even further: short and int are az least 16 bits °

and long is at least 32 bits.
1.4.1.2 32-Bit vs. 64-Bit Systems

Difficulties encountered when porting code from 32-bit to 64-bit systems are due to
implicit assumptions about one or more of these attributes for the integral types
char, short, int, and long.

32-Bit Culture

The programmers of today assume that an int is 32 bits (most of the time) and a
long is exactly 32 bits. Because an int is still used as a counter or array index on
large objects (>32767 bytes or indexes), programmers assume that an int is now 32
bits. This confuses the availability of larger address spaces with (incorrect) assump-
tion that int must be at least 32 bits.

Like the programmers of 15 years ago, today’s programmers haven’t been burned too
much making certain (incorrect) assumptions: short is exactly 16 bits, int is 32
bits (occasionally 16 bits), long is exactly 32 bits. In fact, when programmers run
into problems, e.g., a machine with a 16-bit int, the programmers attribute the prob-
lem to “‘old code running on old machines”” (implying the code was defective), rather
than the programmer was making incorrect assumptions.

The 64-Bit Porting Problem

When porting code to 64-bit machines, the problem has all the same problems of 10
years ago: take the list of 32-bit porting problems (above) and replace ‘16 bits’’ and
‘32 bits” with *“32 bits’” and ‘‘64 bits”’, respectively. Additionally, the code that
runs on 64-bit machines still has to work on 16-bit machines, which causes more port-
ing problems.

Another problem with 64-bit machines is that the mapping of the four basic integral
types (char, short, int, long) varies from machine to machine. 16-bit imple-
mentations generally mapped the types into 8, 16, 16, and 32 bits. 32-bit implementa-
tions generally mapped the types into 8, 16, 32, and 32 bits. However, several map-
pings are possible (and reasonable) on 64-bit machines. The following mappings are
typical:

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 12

40

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

char short int long
8 16 32 32
8 16 32 64
8 16 64 64
8 32 32 64
8 82 64 64
8 64 64 64

For programmers writing in a minimalist style, they could continue to use a mapping
of 8, 16, 16, and 32 bits. For programmers that write in an adaptive style (i.e., take
advantage of the maximum available precision), they will need to resort to complicated
preprocessor tricks or experiment programs and, possibly, <limits.h>.

Standards Effort

With the development and use of 64-bit machines, there has been much interest in the
standardizing integral types on these machines. It is not possible to standardize on a
specific mapping of the four basic integral types (char, short, int, long) to

native types on a particular machine. This is because programmers have made (dif-

ferent) assumptions all along about the use of these types. Each mapping of the four
types has advantages and disadvantages. Some of those disadvantages are that existing
code breaks and needs to be fixed (‘‘ported’’).

Another way of stating this is that there was no agreement on the mapping of type
intents to C *“‘types’’. Of course, there was no agreement on this mapping because the
advantages and disadvantages aren’t the same for each vendor.

Other standards efforts have investigated a new type long long, but this makes the
problem worse (see below).

1.4.1.3 Solving The Same Problem Again

Even if it were possible to choose an appropriate mapping or standardize on a new
type, this would create a whole new set of problems: as programmers adapted and felt
comfortable with the popularity of 64-bit machines (5-15 years from now), they would
still be faced with a portability problem again (going to 128-bit applications), yet
much more complex due to growth of assumptions (not documented or not accessible
in programs) and limited knowledge about the use of a type (loss of information).

Solving portability problems (i.e., investigating the use and intention of each declara-
tion) in the future will only get worse since there will be more code to port (investi-
gate).

The solution is to reduce assumptions and make obvious the intent of the usage. Not
only will programmers be able to understand this, but ‘‘preening’’ programs (e.g.,
lint) will be able to discover portability problems.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 13

Yotk

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

1.4.2 Loss of Information

The loss (or lack) of information when determining a type is the primary cause of
porting problems. Similarly, the implementor must account for the loss of information
and choose a mapping of the four basic integral types that meets the perceived needs
of the programmer.

The porting problems are usually ‘“‘after the fact”, ie., resolving problems porting
code from 32-bit systems to 64-bit systems. There are still problems ‘‘before the
fact”. When a programmer writes new code, he/she still must determine an appropri-
ate type. Thus, new problems are being created today due to a lack of capability (or a
lack of understanding).

This section demonstrates that the loss of information is inevitable if the programmer
is not allowed to specify his/her needs.

1.4.2.1 Standard C

The algorithm above demonstrated that Standard C requires roughly 23 scenarios, yet
provides only five “‘types’’ for implementation. One suggested solution is to provide
a header for each scenario. There are two problems with this. The first problem is
that because typedef is interpreted in a translation phase later than #include
files, it may be impossible to determine correct types based upon preprocessor logic.
The second problem is that the exact types in the sample algorithm were useful on 8-
bit byte machines, but not on word-oriented machines. The header could include an
exact type for every bit precision up to 128 bits, but given the combinations required
(unsigned vs. signed, fast vs. small vs. unoptimized), this would require
about 1000 type definitions.

Another possibility is to train programmer to document the usage at the point of
declaration. While this may help, the compiler won’t be able to detect any portability
problems. Even with appropriate program documentation, porting is still a manual
task because the mapping of type intents to C ‘‘types’’ varies among implementations.

1.4.2.2 Kwan Proposal

Although the Kwan proposal provided for more mappings (29 scenarios map to 9
types), it doesn’t solve the problem with losing information. Thus, it is not expected
that the Kwan proposal will significantly reduce portability problems.

1.4.2.3 Other Proposals

Other proposals to provide Extended Integer Range, for example long long, have
assumed that the central problem is the need for an additional type. At first glance,
this may appear to help, but when comparing this to Standard C, the long long
proposal produces fewer mappings per scenario (20%) than Standard C (22%). So
long long makes the problem worse because more information is lost.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 14

442

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

1.4.3 Minimizing Preprocessor Tricks

Using the preprocessor to determine the correct type can be complex and faulty. In
some cases it may be impossible, using the preprocessor alone, to determine the
correct type. These preprocessor ‘‘tricks’’ shouldn’t be the paradigm for determining
the correct type.

1.4.4 Limited Precision

For strictly conforming programs, Standard C provides a maximum precision of 16
bits for exact types and 32 bits for at-least types. The minimum precision for both
should be at least 128 bits to anticipate the needs of the near future.

1.4.5 Class Libraries Are Impractical

One approach is to implement any new types as a class library in C++. Given the
lack of promotion rules for classes, the class library developer would need to be
specific about promotion rules by writing a prototype of each arithmetic operator with
each combination of operands. Even if only 8-, 16-, and 32-bit types were provided,
this would require several thousand prototypes in scope. Of course, too, there would
need to be code written for each prototype. This would be impractical for most sys-
tems.

1.5 Summary
Programmers make assumptions about the following qualities of integral types:
« The specificed precision (for strictly conforming programs).
« The available precision (for conforming programs).
» Bit-shift operations — are they portable?
« Exact (mask extra bits) vs. at-least.
« Overhead of masking bits.
« Pointer operations — is the address-of operator & allowed?
« Storage optimization — is this the smallest type?
« Speed optimization — is this the fastest type?
The porting problems of the past and present have been caused by:

« The loss of information when choosing a type. Using Standard C, there are
roughly 23 scenarios that map onto five “‘types” (char, short, int, long,
and bit fields).

« Excessive effort required to determine the intent of the programmer. Each variable
must be analyzed when porting the system to a new architecture.

« The intent of the original programmer can be blurred by later maintenance on the
program. For example, the original programmer needed at least 16 bits, so int
was used. After the system had been ported to a 32-bit system, a second

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 15

443

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

programmer (seeing int on a 32-bit system) interprets the program having
exactly 32 bits. A third programmer, when porting to a 64-bit system, changes the
type to short, possibly optimizing for space, and knowing (incorrectly via the
second programmer) that the code couldn’t have used more than 16-bits because
the type was int.

Adding the type long long makes the problem worse, not better. Standard C has
23 scenarios that map into 5 ‘‘types’’ — a mapping of about 22%. Assuming long
long would provide ar least 64 bits precision, this would imply roughly 30 scenarios
that map into 6 ‘‘types’ — a mapping of about 20%. The use of long long will
cause the loss of more information, thus, it will create more portability problems.

Providing a header of 8-, 16-, 32-, and 64-bit types (e.g., the Kwan proposal) doesn’t
solve the problem either. While there may be a higher percentage of mapping
scenarios to types, still, information is lost. Also, because typedef is interpreted in
a later translation phase than headers, it may be impossible to use the preprocessor to
determine the correct type.

Programmers don’t document their intent when declaring a type. Programmers usually
document the purpose of the variable they are declaring.

Implementing a type system like this as a C++ class library would be impractical
because several thousand prototypes would be required.

This proposal provides mechanisms for specifying the minimum precision, the exact-
ness of precision, and the performance, while leaving to the translator the choice of the
actual precision. This division of attributes between the programmer and the translator
allows the programmer to get closer to the hardware for maximum performance
without sacrificing portability.

The following are problems not addressed by this proposal:
« Bit/byte ordering and alignment.
« Data representation.
 Language independent arithmetic.
« Language independent data types.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 16

#4

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

2. TYPE SYSTEM
This proposal achieves three goals:

1. It provides a simpler method of type-determination: the programmer just
specifies what is needed. There is no complex algorithm, no preprocessor tricks,
no experiment programs.

2. No information is lost when specifying the type because the programmer
declares the intent of usage.

3. It provides more than 32 bits of precision, portably.
2.1 Conceptual Model

To motivate the proposed changes to the type model of Standard C, it is instructive to
consider the methods by which programmers select types.

There are in principle three distinct types associated with an application programming
interface: the application type, the interface type, and the implementation type.
Ideally, all three are type-compatible (through promotion or demotion) and thereby
avoid the need for explicit conversion. The application type is the type used directly
by an application. The interface type is the type appearing in a prototype for the inter-
face; it is a form recognizable to both sides of the interface. The implementation type
is the type used to implement the interface functionality.

Though it is often the case that the three types are identical, this is not required. The
purpose in distinguishing the various types is to tune the performance on each side of
the interface. Often one side of the interface requires the fastest type for performing
computations, while the other side of the implementation requires the most compact
type for storage. For example, applications may (and often do) perform calculations
on an integral value using the int type for performance reasons, even though the
implementation of an API may eventually store the value in a short.

The method currently used for specifying portable interfaces is to hide the choice of
integral type behind a typedef in a header. The mapping between the application
types and the basic integral types is then accomplished by either editing the header by
hand when porting to a new system, or providing preprocessor directives to select the
appropriate types based upon the manifest constants defined in <limits.h>. As
demonstrated above, either method is cumbersome, especially if the implementation
type differs from the application type. Furthermore, the API implementer must make
assumptions about the applications requirement’s, such as whether the application
needs to optimize the time or space associated with the type. These choices are, gen-
erally, outside of the scope of the APL

It is more straightforward and portable to define directly the required semantics for a
type and let the translator choose the implementations. This approach has several
immediate benefits:

« There is no need for elaborate preprocessor magic hidden in headers.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 17

445

Specification-Based Extended Ihteger Range — WG14/N459 X3J11/95-060

« Under certain circumstances, the application programmer can optimize the
definition of a compatible application data type for time or space depending upon
the application requirements.

« The portability of the implementation can be improved by specifying the semantics
of the implementation type.

2.2 Proposed Semantics

2.2.1 Type Attributes

An integral type in the proposed type model has the following type attributes:
« Signedness. An integral type may be signed or unsigned.

« Specified precision. An integral at-least type has a specified minimum number of
bits of precision (:N). For exact types, the the specified precision equals the
actual precision.

« Exactness. An integral type may require either exactly (exact) specified preci-
sion, or at-least atleast) the specified precision.

« Performance. An integral type may be optimized for time (fast), optimized for
space (small), or unoptimized.

« Actual Precision. The actual precision is determined by the translator and is an
implementation-defined value not less than the specified precision. The value
chosen by the translator represents the best available match to the other three attri-
butes.

The mapping of type specifications to representations must satisfy the following
axioms:

« The actual precision of two types differing otherwise only in their signedness attri-
bute must be the same.

+ The actual precision of types differing otherwise only in their performance attribute
must be such that the actual precision of a type optimized for space is no greater
than the actual precision of an unoptimized type, and the actual precision of an
unoptimized type is no greater than the actual precision of a type optimized for
time. In other words, the ordering from smallest to largest actual precision is:
small <= unoptimized <= fast.

« The actual precision of two unoptimized types differing otherwise only in their
specified precision must be such that the type with greater specified precision has
actual precision no less than than the actual precision of the other type. In other
words, if specified(N) >= specified(M), then actual(N) >= actual(M).

These axioms ensure that the promotion rules are consistent and sensible. The are
several subtle points, though, that are worth emphasizing:

+ The actual precision of two small types can be stated, if specified(N) >=
specified(M), then actual(N) >= actual(M). Although this isn’t stated in the axioms

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 18

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

above, it can be deduced — a simple proof by contradiction.

« It is not true for two fast types that if specified(N) >= specified(M), then
actual(N) >= actual(M). For example, the fastest 16-bit type might be 64-bits,
while the fastest 32-bit type is 32 bits. The 64-bit value might be slower for 32-bit
operations (e.g., multiplication) than a 32-bit value for 32-bit operations. Another
way of stating this is that the ‘‘fastness’” is only guaranteed for values that don’t
exceed the specified precision. At first this may seem awkward, but it allows the
programmer to ‘‘get close to the hardware’ by achieving the performance objec-
tives with the specified precision.

2.2.2 Promotion Rules

The integral promotions and usual arithmetic conversions are backward-compatible
with the Standard. The integral promotions need only be modified to include the new

types:

In an expression, if an int can represent all values of the original integral type or
bit-field, the value is converted to an int. Otherwise, if an unsigned int
can represent all values of the original type, the value is converted to an
unsigned int. Otherwise the type is unchanged.

Whereas the Standard currently refers to the size of an integer in subclause 6.2.1.2,
size needs to be replaced by actual precision.

The purpose of the usual arithmetic conversions is to cause conversions that yield a
common type for the binary operators requiring operands of the same type. The fol-
lowing summarizes the effect of the usual arithmetic conversions on the operands:

« Minimum Precision. All operands whose actual precision is smaller than the actual
precision of int are promoted to int.

« Actual Precision. The actual precision of the result is at least the maximum of the
actual precisions of the operands.

« Exact Semantics. If both operands are exact, the result is exact. Otherwise the
result is at-least.

« Specified Precision. The specified precision of the result must be at least the max-
imum actual precision of the operands.

« Signedness. If both operands are signed, the result is signed. If bother operands
are unsigned, the result is unsigned. Otherwise, if the operands differ in actual
precision, the result is the the signedness of the operand with the larger actual pre-
cision. Otherwise, the result is unsigned.

« Performance. Performance attributes do not propagate into expressions.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 19

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

2.2.3 Existing C Types

The existing C types, char, short, int, long, and their unsigned counter-
parts all map to an implementation-defined set of specification-based integral types.
This means that an implementor is free to choose an appropriate mapping of these
types, as long as the minimum precision specification (8, 16, 16, 32 bits) is met and
the axiom char <= short <= int <= long must still hold true for both the
specified and actual precision. For example, the following might be valid mappings:

The following mappings are written as
"typedef"s to simplify the presentation.
An actual implementation would implement
the types directly rather than in a
header.

* 0% % % X X X

/*

* Minimal mappings defined by Standard C.

* Note: "char" can be "signed" or

* "unsigned”.

2
typedef unsigned int exact:8 std char;
typedef signed int exact:16 std_short;
typedef signed int exact:16 std_int;
typedef signed int exact:32 std_long;

/*
* Possible mappings for a 16-bit machine.
gl

typedef unsigned int exact:8 std char;

typedef signed int exact:16 std_short;

typedef signed int exact:16 std int;
typedef signed®int exact 32 std 'long;

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 20

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

/%
* Possible mappings for a 32-bit machine.
L 4

typedef unsigned int exact:8 std char;

typedef signed int exact:16 std short;

typedef signed int exact:32 std _int;
typedef signed int exact:32 std_long;

/ *
* Possible mappings for a 64-bit machine.
* NOTE: There are many possible mappings.
o

typedef unsigned int exact:8 char;

typedef signed int exact:16 short;

typedef signed int exact:32 int;

typedef signed int exact:64 long;

Note that these mappings are necessary: (1) so an int is defined (needed to define
the minimum precision of calculations), (2) so existing code doesn’t break. Once the
implementor has defined the mapping of C types to specification-based types, the
implementor must define the mapping of specification-based types to native machine

types.

The reason for two levels of mapping is that the first level (mapping C types to
specification-based types) binds the ‘‘assumptions’” to a single set of specification-
based types. This is necessary for traditional C types to interact with specification-
based types. The second level of mapping is required to determine the actual preci-
sion and storage size of all specification-based types.

In the 64-bit example above, an int is defined as at least 32 bits. The specified pre-
cision exceeds the required precision (16 bits) in Standard C, so this definition is
acceptable. However, a type of at least 32 bits may have 64 bits of actual precision.
The reader may ask, ‘‘why don’t you just define it as at least 16 bits or exactly 64 bits
if it will map to 64 bits actual precision anyway?’’. There is no right answer here —
as long as the minimum precision exceeds Standard C and the four basic types are
ordered properly. An implementor that is providing a new 64-bit architecture with a
large existing customer base of 32-bit code might choose the specified precision of at
least 32 bits because it is based upon the actual precision of int in the code based
the implementor and programmers are coming from.

Other 64-bit implementors going from 32-bit code may choose a mapping that causes
the fewest portability issues, i.e., it maps closely to the assumptions held on the 32-bit
code. These assumptions might be best mapped as:

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 21

449

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

* Possible mapping for a 64-bit machine

* when programmers believed they only

* ran on 32-bit machines. Note there

* is no 64-bit type.

i i
typedef unsigned small int exact:8 char;
typedef signed small int exact:16 short;
typedef signed small int exact:32 int;
typedef signed small int exact:32 long;

In this example, programmers do not have access to a 64-bit type via the normal C
types. In fact, all the old 32-bit code should behave exactly the same on the 64-bit
machine (not bad for portability!). The only problems may be with performance: the
int as a 32-bit type might not be the fastest type. In these cases, the those int
declarations can be changed to signed fast int atleast:32, assuming that
the program won’t use more than 32 bits (there are other considerations such as com-
patible arithmetic semantics for the larger type). Any new code that needs 64 bits pre-
cision won’t work on the old 32-bit system (unless specification-based types are
added), so new code can use, for example, signed int atleast:64.

Existing systems that support long long may consider mapping the type into a
specification-based type, such as:

/*
* This is not really a "typedef”
* but code used for explanation.
x7
typedef signed int exact:64 long long;

2.3 Proposed Syntax

The proposed syntax is intended to expose the full type model to the programmer
while introducing minimal changes to the the existing language syntax. The precise
spelling of the keywords and macros is not central to the proposal and is left to the
discretion of the Committee.

The proposal adds four new type specifiers: atleast, exact, fast and small.
The type specifiers atleast and exact specify the exactness semantics and are
mutually exclusive. The specifiers fast and small specify the performance
characteristic, and are mutually exclusive.

The specified precision of a type is denoted by a colon : and an integral constant
expression following the type specifier atleast or exact. For example, int
exact:32. This usage does not conflict with the use of the colon : for specifying

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 22

A5

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

bit-fields. In the case of an anonymous bit-field there is a unique valid interpretation.

This proposal requires a change to the handling of integral constant expressions. The
translator is required to evaluate constants with an implementation-defined precision of
not less than 128-bit precision. (This minimum limit is compatible with the IEEE
1596.5 Standard for extended integer range.)

This proposal adds support for constants with programmer-specified precision. The
notation is similar to the exponent notation for floating constants: the Pan suffix
specifies an integer constant of nn bits. For example, 123P16 specifies a signed,
16-bit constant; 456P32U specifies an unsigned, 32-bit constant.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 23

<h £

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

3. SUPPORTING SERVICES

The supporting services provide methods for querying the attributes of a type. They
are used by the formatted input/output services of the Standard Library and in applica-
tions needing access to information about the attributes of a type (for example, to con-
vert them to a portable form for storage). The types and macros in this section are
defined in the header <stdint.h>.

3.1 precof Operator

The precof operator returns an object of type prec t (an integral type defined in
<stdint.h>) that encodes the type attributes of an integral type or integral expres-
sion. The expression is not evaluated. Objects of type prec t may be supplied as
parameters to the printf and scanf family of Standard library functions, as well
as the EIR * macros. For any two integral types, T/ and T2, TI and T2 have the
same integer specification (specified precision, actual precision, exactness, perfor-
mance, signedness) if and only if precof (TI1) == precof (12).

3.2 EIR_* Macros

There following macros exact information from an object of type prec t. They are
used in combination with the precof operator to determine the type attributes of a
type or expression.

EIR BIT (prec_tt) Returns the number of bits of actual precision for z.
EIR _SBIT (prec_t1) Returns the number of bits of specified precision for z.
EIR UNSIGNED (prec_tt) Returns 1if zis a unsigned type, O otherwise.

EIR_EXACT (prec_t t) Returns 1 if # is an exact type, O otherwise.
EIR TPERF (prec_t1) Returns >0 if ¢ is optimized for time, 0 if # otherwise.
EIR_SPERF (prec_t t) Returns >0 if 7 is optimized for space, 0 if ¢ otherwise.

All of the macros return values of type int. The returned values are integral con-
stants, and therefore may be used in integral constant expressions, such as specifying
the precision of a type. The following example demonstrates multiplication without
loss of precision.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 24

vy

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

typedef ... fackd t;
typedef , ez fact2 ts

#define factl_len EIR BIT (precof (factl t))
#define fact2_len EIR BIT(precof (fact2 t))
#define prod len (factl_len+fact2_ len)

signed int atleast:prod_len
my. prodifactl t.ifl.,. facteit:;fd)
{
signed int atleast:prod len p;
=Gl o
= Bkl
return p;

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 25

453

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

4. LIBRARY SERVICES

The introduction of additional integral types requires changes to the library services
for formatted input and output. These changes will not affect existing conforming and
strictly conforming programs.

4.1 printf

This proposal adds to the existing printf format specification syntax an optional ?
character specifying that a following d, i, o, u, x, or X conversion specifier
applies to an integer whose type is specified by an argument of type prec t
immediately preceding the integral value in the argument list. The argument of type
prec_t must be the result of applying the precof operator to a type or expression
of the same type as integral value which immediately follows in the argument list, oth-
erwise the result undefined.

4.2 scanf

This proposal adds to the existing scanf format specification syntax an optional ?
character indicating the size of the receiving object for conversion specifiers d, i, o,
u, %, 0or n is specified by an argument of type prec_t immediately preceding the
pointer to the receiving object in the argument list. The argument of type prec_t
must be the result of applying the precof operator to a type or expression of the
same type as the receiving object otherwise the result undefined.

4.3 strtoint
Synopsis

#include<stdint.h>
void *strtoint (const char *nptr, char **endptr,
int base, void *buf, prec_t type);

Description

The strtoint converts the initial portion of the string pointed to by nptr to the
representation specified by type. The conversion is performed as described for
strtol. The result is stored in buf. The function returns a pointer to the con-
verted value. If no conversion could be performed, a null pointer is returned.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 26

954

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

S. CHANGES TO STANDARD C

The following wording changes are made to Standard C.

5.1 Types

Editing Notes

In subclause 6.1.2.5, add to the end of the fourth paragraph the following.
Text

(The range of extended integer types is described in 6.5.2.)

5.2 Integer constants

Editing Notes

In subclause 6.1.3.2, change the grammar for integer-suffix to;

integer-suffix:
unsigned-suffix long-suffix-opt
long-suffix unsigned-suffix-opt
precision-suffix unsigned-suffix-opt

precision-suffix:
P digit-sequence

Add to the end of the second paragraph in Semantics: ‘“The optional precision suffix
specifies the type of the constant is unsigned exact:nn if suffixed by the letters
u or U and the type signed exact :nn if no suffix is appended.

5.3 Signed and unsigned integers
Editing Notes

In subclause 6.2.1.2, it the second and third paragraphs, replace ‘‘greater size’’ with
“‘greater actual precision’, and replace ‘‘smaller size’’ with ‘“‘smaller actual preci-
sion’’.

5.4 Usual arithmetic conversions
Editing Notes

Add this in subclause 6.2.1.5. This text replaces the text starting with *‘If either
operand has type unsigned long int ..’" and ending with ‘‘Otherwise, both
operands have type int.”’.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 27

g Q"/

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

Text

— The integer specification is determined for both operands. The following are deter-
mined.

« Actual precision. The number of bits that participate in the value of the
operand.

« Specified precision. The number of bits that were specified in the type
definition of the operand.

« Exactness of precision. Whether the specified precision requires exactly N bits
of precision, or a minimum (at least) N bits of precision.

« Performances attributes. Whether the type definition of the operand requires
optimization for speed, optimization for time, or no optimization.

« Signedness. The operand is unsigned or signed.

— Operands whose actual precision is smaller than the actual precision of int are
promoted to int.

— The actual precision of the result is at least the maximum of the actual precisions
of the operands.

— If both operands are exact, the result is exact. Otherwise the result is at-least.

— The specified precision of the result must be at least the maximum of the actual
precision of the operands.

— If both operands are signed, the result is signed. If bother operands are unsigned,
the result is unsigned. Otherwise, if the operands differ in actual precision, the
result is the the signedness of the operand with the larger actual precision. Other-
wise, the result is unsigned.

— The result has no performance attributes.

— Both operands are promoted to the type of the result, then the operation is per-
formed. '

Editing Notes

The last sentence of footnote 29 should be replaced with the following text.

Text

Thus, the range of portable floating values is (-1,EIR MAX (precof (fype)) +1).

5.5 Unary arithmetic operators

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 28

45

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

Editing Notes

In subclause 6.3.3.3, the third paragraph in Semantics, replace ‘‘The expression ~E is
equivalent ... <limits.h>.)”’ with the following.

Text

The expression ~E is equivalent to (EIR MAX (precof (E))-E). (The macro
EIR_MAX is defined in <stdint.h>.)

5.6 The precof operator
Editing Notes

Add this after subclause 6.3.3.4:
Constraints

The precof operator shall not be applied to an expression that has function type or
non-integral type, or to the parenthesized name of such a type.

Semantics

The precof operator yields the precision information of its operand, which may be
an expression or the parenthesized name of a type. The precision is determined from
the type of the operand, which is not itself evaluated. The result is an integer con-
stant.

Two types T1 and T2 shall have the same integer specification (specified precision,
actual precision, exactness of precision, performance attributes, and signedness) if and
only if precof(Tl) == precof(T2).

5.7 Bitwise shift operators
Editing Notes

In subclause 6.3.7, the second paragraph in Semantics, replace ‘‘reduced modulo
ULONG_MAX+1 .. <limits.h>.)”’ with the following.

Text

[...] reduced modulo EIR MAX(precof(El))+1. (The macro EIR MAX is
defined in <stdint.h>.)

5.8 Type specifiers
Editing Notes
In subclause 6.5.2, add the following to the Syntax.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 29

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

Text

fast

small

exact : constant-expression
at least :constant-expression

Editing Notes

Add the following to the dashed list in Constraints.
Text

— signed int atleast:N

— signed fast int atleast:N

— signed small int atleast:N

— signed int exact:N

— signed fast int exact:N

— signed small int exact:N

— unsigned int atleast:N

— unsigned fast int atleast:N

— unsigned small int atleast:N

— unsigned int exact:N

— unsigned fast int exact:N

— unsigned small int exact:N

Editing Notes

Add the following after the dashed list in Constraints.
Text

The actual precision of two integral types, differing otherwise only in their signedness,
must be the same.

The actual precision of two integral types, differing otherwise only in their perfor-
mance attribute, must be such that the actual precision of a type optimized for space is
no greater than the actual precision of an unoptimized type, and the actual precision of
an unoptimized type is no greater than the actual precision of a type optimized for
time. Footnote: In other words, the ordering from smallest to largest actual precision
is: small <= unoptimized <= fast.

The actual precision of two unoptimized integral types, differing otherwise only in
their specified precision, must be such that the type with greater specified precision has
actual precision no less than than the actual precision of the other type. Footnote: In

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 30

458

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

other words, if specified(N) >= specified(M), then actual(N) >= actual(M).
Editing Notes

Add the following text prior to ‘‘Forward references’’.

Text

The constant-expression in extended integer types specifies the precision. Extended
integer types that have different specified precision designate different types. fast
indicates an implementation-defined optimization for time. small indicates an
implementation-defined optimization for space. atleast indicates that the specified

‘precision is the minimum number of bits that participate in its value. exact indi-

cates that the specified precision is exactly the number of bits that participate in its
value.

5.9 Extended Integer Range <stdint.h>
Editing Notes
Add this after subclause 7.1.6:
Text
The following types and macros are defined in the standard header <stdint.h>.
The type
prec_t
is the unsigned integral type of the result of the precof operator.
The macros are
EIR LG2FLOOR (V)

which returns the largest integer less than or equal to the base 2 logarithm of the posi-
tive value v; and

EIR LG2CEIL (v)

which returns the smallest integer greater than or equal to the base 2 logarithm of the
positive value v; and

EIR MIN (prec_tt)

which returns the minimum value of an object with precision specification #; and
EIR MAX (prec_tt)

which returns the maximum value of an object with precision specification ¢; and
EIR BIT (prec_tt)

which returns the number of bits of actual precision for ¢, and

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 31

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

EIR _SBIT (prec_tt)
which returns the number of bits of specified precision for #; and
EIR UNSIGNED (prec_t 1)
which returns 1 if z is a unsigned type, O otherwise; and
EIR _EXACT (prec_tt)
which returns 1 if 7 is an exact type, O otherwise; and
EIR_TPERF (prec_tt)
which returns a positive integer if 7 is optimized for time, 0 if # otherwise; and
EIR_SPERF (prec_t 1)
which returns a positive integer if ¢ is optimized for space, 0 if 7 otherwise.
5.10 The fprintf function
Editing Notes

Add this in subclause 7.9.6.1, prior to the dash list item ‘A character that specifies the
type of conversion to be applied.”’.

Text

An optional ? character specifying that a following d, i, o, u, x, or X conver-
sion specifier applies to an integer whose type is specified by an argument of type
prec_t immediately preceding the integral value in the argument list. The argument
of type prec_t must be the result of applying the precof operator to a type or
expression of the same type as integral value which immediately follows in the argu-
ment list, otherwise the behavior undefined.

5.11 The fscanf function
Editing Notes

Add this in subclause 7.9.6.2, prior to the dash list item ‘‘A character that specifies the
type of conversion to be applied ...”".

Text

An optional ? character indicating the size of the receiving object for conversion
specifiers d, i, o, u, x, or n is specified by an argument of type prec_t
immediately preceding the pointer to the receiving object in the argument list. The
argument of type prec_t must be the result of applying the precof operator to a
type or expression of the same type as the receiving object otherwise the behavior
undefined.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 32

Yo

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

5.12 The strtoint function
Editing Notes

Add this after subclause 7.10.1.6.
Synopsis

#include <stdint.h>
void *strtoint (const char *nptr, char **endptr,
int base, void *buf, prec_t type):

Description

The strtoint converts the initial portion of the string pointed to by nptr to the
integral type described by type. The conversion is performed as described for
strtol.

Returns

The result is stored in the object buf points to. The function returns a pointer to the
converted value. If no conversion could be performed, a null pointer is returned. If
the correct value is outside that range of representable values, no conversion is per-
formed, a null pointer is returned, and the value of the macro ERANGE is stored in
errno.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 33

&

/

6.

Specification-Based Extended Integer Range — WG14/N459 X3J11/95-060

ISSUES AND RESOLUTION

6.1 Resolved Issues

The following issues have been resolved.

The promotion rules are too complex with the propagation of EIR attributes.
Resolution: Promotion is only based upon actual precision. The performance attri-
butes doesn’t propagate into expressions.

The strtoint shouldn’t call malloc is the buf pointer is null. Resolution:
strtoint no longer calls malloc.

How are constants specified? Resolution: The Pnn precision suffix may be used
in integral constants.

The signedness of the promotion rules isn’t value preserving. Resolution: The pro-
motion rules have been simplified. In summary, the signedness of the result is the
signedness of the operand with the larger actual precision.

Can the exact type be removed? Resolution: No. Implementations would need to
resort to bit masking for arbitrary precision values. Since the exact type is just a
container around a structure bit field (the & and sizeof operators can be applied
to the container), the compiler already supports these features.

The paper talks about strictly conforming and conforming code, but this doesn’t
imply using specified precision versus actual precision. Resolution: The terms
minimalist style (makes no assumptions about the implementation) and adaptive
style (takes advantage of implementation limits) have been added.

6.2 Open Issues

The following issues are still outstanding.

What is the minimum precision an implementation must support?

How can this proposal be merged with the Kwan inttypes.h proposal.
How can this be taught easily?

The syntax is ugly.

Are there implementations of this available? Partial Resolution: IEEE 1596.5 sup-
port integer types of 8, 16, 32, 64, and 128 bits. However, a sample compiler
would be a better demonstration.

1995-08-25 Revision 3 (5.1) Farance & Rugolsky REVIEW COPY Page 34

%62

