ISO/JTC1/SC22/WG14 /N458 Page 1

From: Frank Farance

Organization: Farance Inc.

Telephone: +1 212 486 4700

Fax: +1 212 759 1605

E-mail: frank@farance.com -

Date: 1995-08-25

Document Number: WG14/N458 X3J11/95-059
Subject: Extended Characters Analysis

1. PROBLEMS

This paper summarizes several of the current activities in
WG1l4 and related standards.

1.1 Extended Identifiers

There has been strong interest in adding support for
identifiers that include international characters.
Currently, C limits identifiers to the characters of the
Latin alphabet, the digit 0-9, and underscore.

There are two approaches solving this problem. The first
involves requiring C translators to support all (or a
majority) encodings of character sets. This would require
supporting many individual sets or a single set that
includes all characters (e.g., ISO 10646). Regardless, this
requirement seems too much to impose on *all* compiler
vendors.

The second approach involves a ‘'‘standard’’ C encoding of
some of the characters, e.g., their Unicode name, but
represented in C’s basic character set (e.g., "\Ul234"
represents the Unicode character 1234). For example, an
identifier might be:

int abc\Ul234def = 1;

This would require very little effort compiler vendors to
add, yet high quality text editors would write the
international characters in this form rather than the native

text form.
1.2 Extended Character Literals

Along with identifiers, it would be convenient for
programmers to include this in their programs. For example,
the extended character would be included in the string
literal:

wchar t x[] = L"abc\Ul234def";
1.3 Character Programming
Many people have been searching for a more generic way of

programming with characters and strings. For example, C has
been and still is strongly tied to 7-bit character systems.

421



ISO/JTC1/SC22/WG14/N458 Page 2

In C, the distinction between a character and a byte
(smallest addressable unit of storage) is blurred. Some
programmers use "char" because they mean ‘‘bytes’’ and
others use "char" because they mean ‘‘characters’’.

2. EXISTING PRACTICE

2.1 Features of C

C provides two types of characters: plain and wide.
Although there is no guarantee, the wide character provides
the capability to store more values (i.e., range) than the
plain character.

C provides two sets of libraries for plain and wide
characters. For wide characters, C distinguishes between
wide character strings (useful for processing similar to
plain characters) and multibyte character strings (used for
encoding wide character strings in files). It should be
noted that a wide character string is a special type of
multibyte character string, i.e., the limiting case.
Typically, wide character strings take up more space, but
are faster to process; multibyte character strings take up
less space and require more effort to process.

C provides two diagraphs and trigraphs for accessing C
language characters that are not in ISO 646. Diagraphs are
a ‘‘prettier’’ way of spelling certain punctators.
Diagraphs are never used in strings. Trigraphs provide
textual substitution of the desirer character, i.e., they
can be used in expressions and in string literals. '

C provides two ways of specifying a character: by name or by
value. For example, "\n" specifies the newline character by
name -- it is independent of locale. "\x0a" specifies the
character by value -- its encoding is the same regardless of
locale. The character "\0" is a character specified by both
name and value.

Typically, name characters are used in text files where the
encoding is ‘‘local’’ and there are tools (e.g., FTP) used
to exchange the file with a ‘‘global’’ format. Name
characters can be used in binary files, but the programmer
shouldn’t expect to exchange the files with other systems
*and have the same meaning*.

Value characters are used in binary files for a ‘‘global’’
format. For example, the string "{x3l\x32\x33" would
represent the ASCII string "123" regardless of locale.

2.2 Related Standards

There are several standards for *encoding* characters:
ASCII, EBCDIC (several encodings), ISO 646, ISO 8859-1, and
ISO 10646.

T2Z



IS0/JTC1/SC22/WG14/N458 Page 3

There has been much interest in ISO 10646 because it is

being sold as a universal character set. ISO 10646
specifies an encoding of characters (specific mapping of
names to values). The following are some of the encodings:

2-octet encoding. This might be suitable as a wide
character encoding for C. However, this doesn’t
include all of the characters, only the popular ones
they’ve defined. Even so, the 2-octet encoding may
require 4-octets for certain character extensions
they are planning. The long term solution is that
characters will require more than 2 octets for
encoding.

4-octet encoding. This might be suitable as a wide
character encoding for C. This is simply the 4-
octet encoding of the character. However, this
doesn’t include composite characters (similar to
overstrikes) for certain levels of ISO 10646.

1,2,3,5-octet encoding. This encoding translates
the 4-octet encoding into a non-control code
encoding suitable for transmission in 8-bit
transmission systems. The encoding varies in length
for each character. This encoding is not suitable
as a wide character encoding, but possible useful
for a multibyte character set encoding.

There are no standards for the names of characters.
Although ISO 10646 has descriptive names (e.g., ‘‘LATIN
LETTER CAPITAL A’’), the committee doesn’t see these has
standardized names. The names of the characters change in
the French version of the ISO standard.

3. POTENTIAL SOLUTIONS
3.1 Adding A New Character Type

This has been proposed by several people for C9X. The
following considerations would direct the new type:

- The type must store greater than 4 octets. 4
octets is not enough.

- The type must be efficient for programming.

- The type should be as small as possible to
minimize storage.

This would suggest that that type would be 5 octets
(smallest storage) or 6 or 8 octet (fastest processing).
Like the extended integer proposals, the problem with a new
type is the same:

- What is the performance of the new type?



ISO/JTC1/SC22/WG14/N458 Page 4

- How do I tune the performance.

My guess is that a single universal character type is
impractical in for the same reasons a single universal
integer is impractical.

3.2 Adding Prefix For Extended Identifiers

This seems like the easiest feature to add, but how would
the character be identified? By name or by value?
Probably, a name character would be useful since programs
are text files. Regardless, which name or value convention
(encoding) does C standardize?

3.3 Adding Prefix For Extended Characters

Like extended identifiers, we would need to refer to the
character. Since character and string literals are used for
both binary and text files, both name and value characters
should be supported. Again, the question is what convention
should C standardize?

3.4 Library

If a new character type is added, a new library would need
to be created. This is probably too many names to add to
C9X. Short of adding overloaded functions, I don’t see a
solution here.

3.5 Minimum Portability

Even if C9X includes extended characters, this still doesn’t
allow the programmer to write portable programs using the
extended characters because the "wchar t" type varies in
precision from system to system.

Also, the availability and encoding of characters varies
from system to system. It still isn’t clear what the
minimum portability is.

4. CONCLUSIONS

It is too early to standardize these features now. While
there appears to be small features we can add (e.g.,
extended identifiers), I strongly recommend that WG1l4
consider solving the larger questions first. Probably the
more important question is ‘‘what is the minimum portable
program we should support’’.

424



