cl RUs T D0 1000 TOl CY 4927000 VU MR LU ol F.0

LG/ YSS
XITV778

Defect Report NNI-1

Submission date: 21 Aug 95
Submittor: NNI
Source: E.G. Keizer

Short description of problem:
The Standard contains conflicting words on whether "f()" can be considered a call
to function-like macro with one empty argument.

Problem description:
There seems to be a problem with empty arguments in macro calls in the current
standard. An example:

#define foo() A
#define bar(a) B

foo() // no arguments sy,
bar() // one empty argument ??

There seem to be two choices when there are no preprocessing tokens between
the (and the ) in a macro call: a single empty argument or no arguments.
It is generally accepted that the call to foo has no arguments.
The call to bar is different, according to some the call violates a constraint, others
are of the opinion that the call to bar is undefined behavior and that is can be
seen a a call with a single, empty argument..
Quotes from paragraph 6.8.3 of the Standard: fourth paragraph of constraints:
The number of arguments in an invocation of a function-like macro shall
agree with the number of parameters in the macro definition, and there
shall exist a ) preprocessing token that terminates the invocation.
last paragraph of semantics:
If (before argument substitution) any argument consists of no preprocess-
ing tokens, the behavior is undefined.
The question
is the call to bar in the example a constraint violation or undefined
behavior?
seems to show an ambiguity in the Standard.

The X3J11 archives contain several requests to allow empty macro arguments and
refusals to do so. The refusals stated that the reasons would be included in the
rationale, but the rationale is silent on this matter. Hearsay indicates that X3J11

decided to leave the issue of empty macro arguments open. i

A7



Solutions:
There seem to be four ways to change the Standard:

B

2

Resolve the ambiguity by considering "bar()" and "foo()" calls with no parame-
ters.

Resolve the ambiguity by considering "bar()" and "foo()" calls with one empty
parameter. “

Resolve the ambiguity by making the interpretation of the empty preprocess-
ing token sequence context dependent and consider "bar()" a call with one
empty parameter and "foo()" a call without parameters.

Leave the issue open by making clear that empty arguments are undefined

behavior and that a call without preprocessing tokens between the
parenthesis to a function-like macro defined with one parameter does not

violate a constraint.

Arguments for a cheice:

Solution 2 causes a constraint violation in "foo()" and thus forbids calls to
macros defined without parameters. Argument-less macros are often used in
current C programs. Thus making this change would violate the first part of
guiding principle 1 of the C9X charter: Existing code is important.

Solution 4 allows compiler writers to choose between solution 1 and solution
3.

Solutions 1 and 2 are in conflict with N418, the proposal to allow empty argu-
ments in macro replacements

Solution 3 conflicts with our rule to "keep it simple" and will create confusion.
The following example illustrates serves as an illustration.

A user had a program in which he used a function-like macro without argu-
ments. While doing an overhaul of the program he decided that he needed
one argument and changed the function definition accordingly. When he
edited his program to change the calls, he forgot one call. His program com-
piled, but showed strange behavior. After several hours of debugging he
found the one call with the missing arguments and was very surprised that
the compiler had not complained.

Proposal

The arguments above led us to believe that allow empty arguments to function-
like macros would be bad from a software engineering viewpoint and cause confu-
sion. Thus we propose to use solution 1. This can be done by inserting the fol-
lowing sentence after the sentence from the semantics section of 6.8.3 quoted
above.

A call to a function-like macro without preprocessing tokens between the
opening and closing parenthesis is taken to be a call without arguments,
not a call with a single empty argument.

(00



