New Form of Pragma
WG14/N449
X3J11/95-050

Bill Homer
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121

August 23, 1995

Abstract

The pragma provides a syntax for implementation-specific extensions to C. Here an alternative
syntax is proposed that allows a pragma to be included in the replacement-list of a macro defini-

tion.

1 Introduction

The pragma preprocessing directive can be used to specify a wide range of implementation-dependent
details. In the Cray Standard C compiler, for example, these include requesting additional names
for a function, specifying an alternative calling sequence for a function, and enabling vector or par-
allel execution of the iterations of a loop. These uses range from merely convenient to essential for

acceptable performance.

The syntactic specification of the pragma as a preprocessing directive has proven to be a mixed
blessing. It has the advantage of being almost completely unstructured, and that gives each implemen-
tation a lot of freedom in specifying the details of the pragmas it supports. On the other hand, this
means that different implementations have different ways of specifying essentially equivalent pragmas.
Programs that are meant to be portable among a number of systems, will likely need to use different
pragmas on each, as shown in Figure 1.

2 WG14/N449, X3J11/95-050 New Form of Pragma

Figure 1 Conditionally compiled pragmas

#if defined(Machine_A)
/* Request fastest calling sequence for machine A */
pragma fast_call
#elif defined(Machine_B)
/* Request fastest calling sequence for machine B */
pragma vfunction
#endif
void f(int n, double * a, double * b) {
#if defined (Machine_B)
/* Vectorization hint (ignore vector dependencies) */
pragma ivdep
#elif defined(Machine_C)
/* Parallelization hint (iterations are independent) */
pragma independent
#endif
while(n-- > 0) {
*a++ += *b++;

}

The obvious problem with such conditional inclusions of pragmas is that they can be so verbose
that they make the program more difficult to read, to maintain, and to port to a new system. In
particular, a port may require adding yet another alternative to a block of condition inclusions that

is repeated in many places in the program.

Include files can be used to ameliorate this problem, as shown in Figure 2. This approach does
improve readability, but it requires a separate small file for each pragma, and a potentially large
number of inclusions of these files. Unless a translator is aggressive about caching and reusing included
files, this can markedly increase compile time. For example, the compile time measured for files
containing 100 replications of the examples in Figure 1 and Figure 3 differed by less than 3% for one
compiler but by a factor of 3 for another.

Figure 2 Pragmas in include files

fast_call.h:

#if defined(Machine_A4)

/* Request fastest calling sequence for machine A */
pragma fast_call
#elif defined(Machine_B)

/* Request fastest calling sequence for machine B */
pragma vfunction
#endif

independent.h:

#if defined(Machine_B)
/* Vectorization hint (ignore vector dependencies) */
pragma ivdep
#elif defined(Machine_C)
/* Parallelization hint (iterations are independent) */
pragma independent
#endif

)

New Form of Pragma WG14/N449, X3J11/95-050 3

Figure 3 Included pragmas

#include "fast_call.h"
void f(int n, double * a, double * b) {
#include "independent.h"
while(n-- > 0) {
*a++ += *xb++;

}

But perhaps the most serious limitation of the directive syntax is that it cannot be included in
the replacement-list for a macro. This means that if the function f in these examples is redefined as
a macro, no directives can be specified in its body. There are cases where both a pragma and the
conversion of the function containing it to a macro would significantly boost performance, and so it
is unfortunate that the two cannot be combined.

2 Prior art for a solution

The Cray Standard C compiler supports an alternative syntax for pragmas which allows them to
appear in a macro replacement-list, as shown in Figure 4.

Figure 4 Pragmas tn macros

#if defined(Machine_A)
/* Request fastest calling sequence for machine A */
define Fast_call \
_Pragma(“"fast_call")
#elif defined(Machine_B)
/* Request fastest calling sequence for machine B */
define Fast_call \
_Pragma ("vfunction")
#else
define Fast_call
#endif

#if defined(Machine_B)
/* Vectorization hint (ignore vector dependencies) */
define Independent _Pragma("ivdep")
#elif defined(Machine_C)
/* Parallelization hint (iterations are independent) */
define Independent _Pragma("independent")
#else
define Independent
#endif

Here, the relevant macros for the various target systems are defined in a single header file as
relatively general and mnemonic macros. This allows the previous examples to be expressed more
clearly in Figure 5.

5l

4 WG14/N449, X3J11/95-050 New Form of Pragma

Figure 5 Using the macros
#include "pragmas.h"

Fast_call
void f(int n, double * a, double * b) {
Independent
while(n-- > 0) {
*xa++ += *b++;

}

It also allows a pragma to be used in a macro version of the function.

Figure 6 Pragmas in macroized function

define f(N, A, B) \
{ int n = (N), double * a = (A), double * b = (B); \
Independent while(n-- > 0) { *a++ += #b++; } \

}

Note that in these examples, each type of _Pragma is hidden in a macro with a simple descriptive
name, and that name is defined to be empty when the relevant type of pragma is not supported.

Even if Pragma(...) appears explicitly at each point in the program where a pragma is needed, it
still offers a portability advantage over the current directive. With the new syntax, all pragmas can be
eliminated by simply defining a function-like macro named _Pragma with an empty replacement-list.

3 Changes to the Standard

A new identifier, Pragma, is recognized by the preprocessor as special. (The identifier _Pragma used
above was appropriate for a vendor-specific implementation, but an identifier from the user’s name
space is more appropriate for a standard feature.)

The preprocessing tokens consisting of the Pragma identifier followed a string-literal enclosed in
the parentheses operator are translated as follows.

At the end of phase 4, the string-literal is “de-stringized”. This means that the leading and trailing
double quotes are deleted and then all escaped double quotes are converted to double quotes. The
resulting sequence of characters is then processed from phase 1 through 4, as if it were the contents
of an include file. The resulting sequence of preprocessing tokens is thereafter interpreted by the
implementation in the same way as if it had appeared in the context of (the original form of) a pragma
directive. In particular, none of these preprocessing tokens, the Pragma identifier, or the associated
parentheses are converted into tokens in phase 7 (except possibly as part of an implementation-defined
side effect of the execution of a particular pragma).

Although it is outside the scope of the Standard, if the translator is directed to produce a pre-
processed version of the source file, the resulting sequence of preprocessing tokens should then be
“re-stringized”, as if by the # operator.

4 Why use quotes?
Why not allow any sequence of preprocessing tokens within the parentheses, and eliminate the “de-

stringize” step? This would make the specification a little simpler, but would probably make the
implementation more difficult. The string-literal approach minimizes the interaction of the new feature

9

New Form of Pragma WG14/N449, X3J11/95-050 5

with the rest of preprocessing, and allows it to be added to an existing implementation as a largely self-
contained separate step. (In the Cray Standard C compiler, _Pragma is represented as a predefined,
single-argument macro, which is given special treatment at just a few places in the preprocessing code.
The conversion of the string-literal argument into preprocessing tokens is done in the same function
that is used for the result of the ## token gluing operator and also for a macro that is defined on the
command line by the -D option.)

Another consideration is that C code is likely to be processed by tools other than the compiler,
and it can be useful for Pragma to be able to masquerade an an external function, as it can in the
string-literal version.

Finally, if the string-literal version is available, the other syntax can be implemented by the
programmer with a couple of macro definitions, as in Figure 7. (Note that a pragma that requires
a comma-list not enclosed in quotes would be a problem for this approach, because the number of
macro arguments for PRAGMA would be wrong.)

Figure 7 Macro implementation of the alternative syntaz

#define EXPRAG(x) Pragma (#x)
#define PRAGMA(x) EXPRAG(x)

int libfunc() { ... }

/* Direct the linker to define alternate entry points for libfunc. */
PRAGMA(duplicate libfunc as (1ib_func,LIBFUNC))

In view of these considerations, the string-literal approach seems preferable.

5 Conclusion

A small addition to the Standard allows pragmas to be included in a macro replacement-list. The
benefits are that programs that make use of pragmas can be more readable and more easily ported,
and can compile and execute more quickly on some systems.

(17

(B9

