Document Number: WG14 N447/X3J11 95-048

C9X Revision Proposal

Title: Classes in C - Part 4: Constructors and Destructors _
Author: Robert Jervis

Author Affiliation: Sun Microsystems, Inc.
Postal Address: 2550 Garcia Ave., Mountain View, CA 94043 USA
E-mail Address: robert.jervis@eng.sun.com

Telephone Number: +1 415 3367964

Fax Number: +1 415 9640946

Sponsor:
Date: 1995-08-19
Proposal Category:
___Editorial change/non-normative contribution
__Correction
X New feature
___Addition to obsolescent feature list
___Addition to Future Directions
___Other (please specify)
Area of Standard Affected:
___ Environment
X Language
__ Preprocessor
__Library
___Macro/typedet/itag name
__Function
__Header
___Other (please specify)
Prior Art: C++

Target Audience:

Constructors provide a common means for executing initialization

code in a compact and standard way.

Destructors provide an even more convenient way to insure that
when an object is freed, its internal data structures are properly
cleaned up. Frequently, data structures are allocated inside an

object or files are opened by an object. These resources can then

be systematically released in response to a delete operator.

Related Documents (if any): C++ Draft Standard

Proposal Attached: X Yes __ No, but what's your interest?
Abstract:

This proposal includes the exact wording changes needed to add
constructors and destructors to classes in the C Standard.
Constructors provide a means for initializing newly instantiated
objects using a language mechanism rather than any convention
for initialize methods. Strictly speaking, however, they

provide only minimal additional functionality (because of the
way in which virtual method dispatch is handled) over normal

23

WG14/N447, page 2
methods.

Destructors provide a means for scheduling cleanup work in an
object as it is about to be deleted. This provides a standard
and convenient way to assist the delete operator without
introducing special conventions that the user of a class needs
to be told about.

Proposal:

The wording changes are summarized in the following points.

* Constructors and destructors are allowed for class objects,
but in constrained situations.

* Static constructors and destructors are not allowed. This is
accomplished by forbidding the static allocation of an instance
of a class with either a destructor or constructor.

* Automatic destructors are not allowed. Automatic instances of
classes with destructors are not allowed.

* A constructor is invoked in an automatic declaration of an object
or in a new operator.

* A destructor is invoked as a side effect of the delete operator.

* In a deeply nested class hierarchy, constructors actually
modify the identity of an object so that any virtual method
dispatch has a predictable outcome (i.e. until a constructor
for base class foo is done, the object has type foo, but then
the constructor for derived class subfoo runs with the object
typed as a subfoo). Similarly, destructors work from the leaf
type to through the base types executing destructors and
setting the object type as it goes.

The following are the specific changes to the Standard. Section numbers are
in reference to the International Standard ISO/IEC 9899:1990 Programming
Languages - C. Where relevant, changes affecting the TC1 defect reports
are stated where they appear in the Standard. The TC2 Defect Reports have
not been scanned for possible changes, nor has the normative addendum.

6.1.2.4 Storage Duration of Objects
Page 22, AFTER line 22, ADD:

An object whose identifier is declared with a class type containing

a constructor or destructor or an aggregate type, any of whose
members or elements have a class type containing a constructor or
destructor, shall not have static storage duration.

An object whose identifier is declared with a class type containing

a destructor or an aggregate type, any of whose members or elements
have a class type containing a destructor, shall not have automatic
storage duration.

Y

WG14/N447, page 3

RATIONALE:

Static constructors and destructors introduce additional semantics

and demand support from the runtime that may not be available in

C implementations. Since the order of execution of static constructors
and destructors is unspecified in C++, they have very limited utility.

Destructors for automatic objects introduce the problem of when and
where those destructors get called. In the interest of keeping the
amount of code that is generated as overt as possible, automatic
destructors are not allowed.

Note that in both of these cases, the wording is not in a constraints
section, so violating these restrictions is only undefined behavior.
Thus, an implementation could support static constructors and static
and automatic destructors without issuing a diagnostic.
6.3.1 Primary Expressions
<<From previous proposal>> Syntax, page 39, line 6, IS:
new type-name
SHOULD BE:
new type-name constructor-call opt
Constraints
The type name appearing in a constructor new expression shall
name a class type that contains a constructor. The number of

argument expressions shall agree with the number of parameters
defined for the constructor in that class.

Example
class con {
int X, Y;
public:
con(int a, int b);
b
func()
{

class con *cp;

cp = new con(2, 3);

}

con::con(int a, int b)

{

X=a,

(n

WG14/N447, page 4

y=b;
}

In this example a class is declared with a constructor that
accepts tow ints. The operator new then includes arguments
for the constructor, which is called as a side-effect of the
new operator. Inside the constructor, in this case, the
arguments are copied to private data members of the class.

This approach gives the constructor the opportunity to validate
the arguments before storing them.

RATIONALE:

<< From pfevious proposal >> Page 39, IS:

ADD:

The new operator allocates enough storage to hold an object of

the named type. The value of the expression is a pointer to the
allocated object and the type of the expression is pointer to the
named type. If the named type or any member or element of the type
needs an identity, the identity is assigned in the newly allocated
storage.

A new operator with a type name followed by parentheses enclosing an
optional argument expression list is a constructor new

expression. Such an expression both allocates storage and calls the
constructor for the allocated type. If an identity needs to be set

for any objects allocated, they are set before the constructor is

called.

ADD TO Forward References:

6.5.4.4 Constructor Calls

RATIONALE:

Operator new needs to allow for calls to constructors.

<< From previous proposal >>

6.3.3.5 The delete Operator

ADD TO Semantics:

If the delete operator is applied to a pointer to a class that

contains a destructor, or inherits from a class containing a

destructor, the destructors are called before the memory of the

object is freed. Beginning with the pointed-at class (or with the

class corresponding to the identity for the actual object pointed at,

if the class contains or inherits a virtual destructor) and proceeding

to each base class in turn until all base classes have been exhausted,
any destructor in each class is called. If any class in this sequence
has an identity, the identity of the object is modified before the

O

WG14/N447, page 5

call to each destructor so that the identity is of the class containing

the destructor about to be called.

RATIONALE:

Destructors must be called in sequence when an object is deleted. The
provision for virtual destructors allows complex data structures to
pe deleted without specifically knowing what the object type actually

IS.

<< From previous proposal >> Page 64, before line 1:

6.5.2.4 Class Specifiers

Syntax

SHOULD BE:

class-declaration:
visibility-specifier opt
class-specifier-qualifier-list
struct-declarator-list ;

class-declaration:
visibility-specifier opt basic-class-declaration ;

basic-class-declaration:
class-specifier-qualifier-list struct-declarator-list
constructor-declaration
destructor-declaration

constructor-declaration:
class-name (parameter-type-list)

destructor-declaration:
virtual opt ~ class-name ()

class-name:
identifier

<< Previous proposal >> AT THE END OF Constraints ADD:

The class name in a constructor or a destructor declaration
shall name the class of the enclosing class-specifier.

At most one constructor shall be declared within a class-specifier.
At most one destructor shall be declared within a class-specifier.

A class-specifier shall not include a member declaration with a class
type that contains either a constructor or a destructor, nor with an

array type that is an array of such classes.

=

WG14/N447, page 6
<< Previous proposal >> Semantics, 1S:

A member of a class may have any object or member function type. In
addition, a member may be a bit-field.

SHOULD BE:

A member of a class may have any object or member function type. In
addition, a member may be a bit-field, a constructor or a destructor.

AT THE END OF Semantics ADD:

The enclosing class name followed by a parameter list enclosed in
parentheses is a constructor declaration.

The enclosing class name preceded by an optional virtual keyword and
a tilde and followed by an empty pair of parentheses is a destructor
declaration. If the virtual keyword is present, it declares a
virtual destructor for the class.

RATIONALE:
Constructor and destructor declarations conform to most, but not all
of the rules for a regular function declaration. It is therefore
easier to write the syntax to specify the constructor and destructor
syntax specifically.

6.5.4 Declarators

Page 65, line 18 IS:

identifier
SHOULD BE:

identifier
identifier :: identifier

<< From previous proposal >> Page 65, line 22 AFTER:

direct-declarator (parameter-type-list)
type-qualifier-list opt

ADD:
constructor-declarator
Page 65, AFTER line 40 ADD:

constructor-declarator:
identifier constructor-call

constructor-call:
(argument-expression-list opt)

28

WG14/N447, page 7
Constraints

The identifier declared in a constructor-declarator shall have class
type and that class shall contain a constructor, or shall be derived
from a class containing a constructor.

Page 66, AFTER line 11 ADD:

A constructor declarator is an identifier followed by a parenthesis
enclosed argument list. It declares the identifier outside the
parentheses.

RATIONALE:

Automatic constructor declarators are implicit calls to the constructor
for the object being defined.

Page 69, line 10, NEW SECTION:
6.5.4.4 Constructor Calls
Constraints

The number of arguments in a constructor call shall agree with the
number of parameters. Each argument shall have a type such that its
value may be assigned to an object with the unqualified version of the
type of its corresponding parameter.

Semantics

A new expression or a identifier in a declarator followed by
parentheses () containing a possibly empty, comma-separated list
of expressions is a constructor call. The object allocated by the
new expression or the object declared by the declarator denotes the
object being constructed. The list of expressions specifies the
arguments of the constructor.

An argument may be an expression of any object type. In preparing
for a constructor call, the arguments are evaluated and each parameter
is assigned the value of the corresponding argument.

The arguments are implicitly converted, as if by assignment, to the
types of the corresponding parameters. The ellipsis notation in a
constructor declaration causes argument type checking to stop after
the last declared parameter. The default argument promotions are
performed on trailing arguments.

The order of evaluation of the arguments is unspecified, but there
is a sequence point before the call.

Recursive constructor calls shall be permitted, both directly and
indirectly through any chain of other functions or constructors.

RATIONALE:

Constructors are called in much the same way as functions. Since

WG14/N447, page 8

constructors must be declared using new style parameter lists,
fewer things need to be said about the argument passing.

6.7 External Definitions
<< From previous proposal >> Page 81, line 6, Syntax IS:

external-declaration:
function-definition
declaration
member-function-definition

SHOULD BE:

external-declaration:
function-definition
declaration
member-function-definition
constructor-definition
destructor-definition

<< From previous proposal >> Page 81, line 22-23 [S:

An external definition is an external declaration that is also a
definition of a function, an object, or a member function.

SHOULD BE:
An external definition is an external declaration that is also a
definition of a function, an object, a member function, a constructor,
or a destructor.
NEW SECTION:
6.7.4 Constructor Definitions
Syntax
constructor-definition:
class-name :: class-name (parameter-type-list)
base-constructor-call opt

compound-statement

base-constructor-call:
: class-name (argument-expression-list opt)

Constraints:

The class-name specified in a constructor definition shall be an
identifier declared with class type containing a constructor.

The parameter-type-list shall have the same number of parameters
as the constructor declaration in the specified class, and the type

of each parameter shall have compatible type with its corresponding
parameter in the constructor declaration in the class.

SO

WG14/N447, page 9

The class-name specified in a base-constructor-call shall be

an identifier declared with class type containing a constructor.
Moreover, the class of the constructor being defined shall be
derived from the class named in the base constructor call and for
all classes that derive from this base and in turn are bases for
the class whose constructor is being defined shall not contain any
constructor.

Semantics:

A constructor definition specifies the name of the class for which
the constructor is being defined, the identifiers of its parameters
and an optional call to a base constructor. The argument list in
any base constructor call shall be correct for the base constructor.

For any classes that have corresponding identities, the identity of
the object being constructed is modified to indicate the class
containing the constructor before it is called.

The base constructor call is executed before the compound-statement
of the constructor definition.

On entry to the member function the value of each argument expression
shall be converted to the type of its corresponding parameter, as if

by assignment to the parameter. Array expressions and function
designators as arguments are converted to pointers before the call.

A declaration of a parameter as “array of type" shall be adjusted

to "pointer to type," and a declaration of a parameter as “function
returning type" shall be adjusted to "pointer to function returning

type,” as in 6.2.2.1. The resulting parameter type shall be an

object type.

On entry to the member function the value of 'this' is set to the
address of the appropriate class object as specified in 6.3.1,
6.3.2.5.

Each parameter has automatic storage duration. Its identifier is
an Ivalue. The layout of storage for parameters is unspecified.

The object that 'this' refers to has automatic storage duration and
it is an Ivalue. The layout of storage for 'this' is unspecified.

6.7.5 Destructor Definitions

Syntax

destructor-definition:
class-name :: ~ class-name () compound-statement

Constraints:

The class-name specified in a destructor definition shall be an
identifier declared with class type containing a destructor.

>

WG14/N447, page 10
Semantics:

A destructor definition specifies the name of the class for which
the destructor is being defined.

On entry to the member function the value of ‘this' is set to the
address of the appropriate class object as specified in 6.3.3.5.

The object that 'this' refers to has automatic storage duration and
it is an Ivalue. The layout of storage for 'this' is unspecified.

RATIONALE:

This language simply extends the rules for member functions to include
constructors and destructors where appropriate.

o7y

