Document Number: WG14 N446/X3J11 95-047

C9X Revision Proposal

Title: Classes in C - Part 3: Virtual Functions
Author: Robert Jervis

Author Affiliation: Sun Microsystems, Inc.
Postal Address: 2550 Garcia Ave., Mountain View, CA 94043 USA
E-mail Address: robert.jervis@eng.sun.com

Telephone Number: +1 415 3367964

Fax Number: +1 415 9640946

Sponsor:

Date: 1995-08-19
Proposal Category:
___Editorial change/non-normative contribution
__Correction
X New feature
___Addition to obsolescent feature list
___Addition to Future Directions
__ Other (please specify)
Area of Standard Affected:
___ Environment
X Language
___Preprocessor
___Library
___Macro/typedef/itag name
___Function
___Header
___Other (please specify)
Prior Art: C++

Target Audience:

These features extend the usefulness of class hierarchies by
allowing code to be written that can be extended to include new
classes without the calls to virtual functions being affected.
Frequently, virtual functions are used in situations where

switch statements appear in conventional C programs. Instead of

dispersing the behavior of a class into many places in a program,
virtual functions can be used to abstract class-specific behavior

into them and keep class-independent code free of implementation

details.

Virtual functions can also enhance sharing of code, since common

non-vritual methods can be used in combination with virtual code
to provide extensible libraries. Virtual functions can be defined

in user code that then makes use of shared components in library

code.

Related Documents (if any): C++ Draft Standard

Proposal Attached: X Yes __ No, but what's your interest?
Abstract:

17

WG14/N446, page 2

This proposal includes the exact wording changes needed to add
inheritance assuming the changes of Part | of CLasses in C have
been accepted for the C Standard. Inheritance in this proposal is a
subset of the corresponding C++ feature and is intended to be upward-
compatible with it.

Please advise me if | have accidentally introduced incompatibilities

in this and the following proposals.

Proposal:

The wording changes are summarized in the following points.
* Member functions can be declared to be virtual.

* Calls to virtual functions use a hidden object identity
to resolve the actual function called.

* A call to a virtual function using a pointer calls the
function for the actual object pointed at, not the declared
type of the pointer.

* The identity of a static or automatic object is assigned
when the object is created.

* Operators new and delete have been added to provide a means
for setting the hidden identity of dynamically allocated
objects. Operator new allocates an object of a specified type.
Operator delete is included for symmetry and to provide better
compatibility with C++.

* Three keywords are needed for this proposal: delete, new and
virtual.

The following are the specific changes to the Standard. Section numbers are
in reference to the International Standard ISO/IEC 9899:1990 Programming
Languages - C. Where relevant, changes affecting the TC1 defect reports
are stated where they appear in the Standard. The TC2 Defect Reports have
not been scanned for possible changes, nor has the normative addendum.

6.1.1 Keywords

ADD THE FOLLOWING KEYWORD TO THE LIST:

virtual

NEW SECTION:
6.1.2.7 Object Identity

An object whose identifier is declared to have a class type which either
includes a virtual function or inherits such a class will be assigned a
runtime identity, unique to its declared class type. This identity is
assigned when storage for that object is reserved. If the object is a
member or element of some aggregate type, its identity is assigned when

¥

WG14/N446, page 3

storage for the aggregate is reserved.

An object allocated by a new operator that names a class type which either
includes a virtual function or inherits such a class will be assigned its
runtime identity as a side effect of the operator.

The identity corresponding to a class is stored in such a way that among

a group of classes deriving from a common base class that has an identity,
each class in the group is distinguishable from the others.

Example:

class base {
public:

void virtual action();

class derived : public base {

public:

void virtual action();
b
func()
{

class base *bp;

bp = new derived;

bp->action(); /* Calls derived.action */

}

In this example, func creates an object with derived type. This
establishes an identity for that memory. THe address of the allocated
memory is then assigned to a pointer to the base class (allowed by for
inherited classes). Then, using the base pointer, the virtual function
for class derived is called, not for base. If the virtual keywords were
removed, the call would call the action method for class base.

In this example,

6.3.1 Primary Expressions
ADD TO Syntax, page 39, line 6, AFTER:

string-literal
(expression)

ADD:
new type-name
Page 39, line 17, AFTER:

... Or a void expression.

WG14/N446, page 4

ADD:

The new operator allocates enough storage to hold an object of

the named type. The value of the expression is a pointer to the
allocated object and the type of the expression is pointer to the
named type. Ifthe named type or any member or element of the type
needs an identity, the identity is assigned in the newly allocated
storage.

The value of the allocated storage, other than the assigned identities
is indeterminate.

RATIONALE:

Operator new provides a means to setting the virtual table pointers
in allocated objects, since the expression explicitly states the

type that will be used for the storage. Otherwise, the only way

to initialize an allocated object with virtual functions would be

to copy an existing and initialized object of the same type into

the allocated storage.

6.3.2.5 Member Function Calls

Semantics

<<From the first part on classes>>, IS:

ADD:

A postfix expression followed by an arrow ->, an identifier and
followed by parentheses () containing a possibly empty, comma-
separated list of expressions is a member function call. The value
of 'this' in the called member function shall be the value of the

the first operand.

If the member function named is a virtual function, the actual
function called is the same-named virtual function of the class
whose identity is stored in the object pointed to by the first
operand. [f the object pointed to by the first operand does not
have a properly assigned identity, the behavior is undefined.

RATIONALE:

The power of virtual functions derives from the dynamic dispatch
involved. This needs a hidden 'identity' stored with each object
that has virtual functions. In C++ implementations, this identity
is the virtual function table pointer. The dispatch can then be
performed very efficiently on most machines, usually with just a
couple memory fetches before the actual call.

6.3.3 Unary Operators

Syntax, Page 43, line 19, AFTER:

20

WG14/N446, page 5
sizeof (type-name)

ADD:
delete unary-expression
NEW SECTION, Page 46, ADD:
6.3.3.5 The delete Operator
Constraints

The delete operator shall be applied to an expression with pointer
to object type.

Semantics

The delete operator frees any storage allocated previously by the
new operator. If the pointer passed to the delete operator was not

returned by some previous new operator, the behavior is undefined.

RATIONALE:
While it would be possible to specify that storage allocated by
operator new is freed by the library free call, this is not true
for C++, so portability of C code to C++ would be harmed. AC
implementation could use malloc to implement operator new and
free to implement operator delete
6.5.1 Storage-Class Specifiers
Syntax, Page 58, line 8, AFTER:
register
ADD:
virtual
Constraints, Page 58, line 11, AFTER:
... specifiers in a declaration.

ADD:

The virtual specifier shall appear only in declarations of member
functions.

Semantics, Page 58, line 20, AFTER:
... storage-class specifier other than extern.
ADD:

The virtual specifier is called a "storage-class specifier" for

WG14/N446, page 6

syntactic convenience only. A member function declared with the
virtual specifier is a virtual function.

When a virtual function is declared in a class derived from a
base class that contains a member with the same name, the
virtual function shall be delcared with a compatible type with
the type of the member in the base class.

RATIONALE:

This provides the syntactic placement for the virtual declaration
specifier. The requirement for compatible declarations is
needed to ensure that calling conventions are not violated by
virtual functions in different classes. The rules could be
slightly less strict such as the rules C++ has apparently
adopted, but the utility of such a relaxed set of rules is
arguable. These rules have the virtue of simplicity.

