Document Number: WG14 N445/X3J11 95-046

C9X Revision Proposal

Title: Classes in C - Part 2: Inheritance
Author: Robert Jervis
Author Affiliation: Sun Microsystems, Inc.
Postal Address: 2550 Garcia Ave., Mountain View, CA 94043 USA
E-mail Address: robert.jervis@eng.sun.com
Telephone Number: +1 415 3367964
Fax Number: +1 415 9640946
Sponsor:
Date: 1995-04-25
Proposal Category:
___Editorial change/non-normative contribution
__Correction
X New feature
___Addition to obsolescent feature list
___Addition to Future Directions
__ Other (please specify)
Area of Standard Affected:
__ Environment
X Language
__ Preprocessor
__ Library
__Macro/typedef/itag name
__ Function
__Header
__ Other (please specify)
Prior Art: C++
Target Audience:

These features are useful to a wide range of programmers. The
facilities help improve problems of complex data structures

that share common components. A class hierarchy frequently
replaces unions of structures in C. For example, expression tree
nodes in a compiler are frequently described in C as a union of
several different structures, each of which share some common
prefix of members. Inheritance permits expressing this system of
structures as a base class, containing the common members, and
derived classes that represent each member of the union.

Inheritance can also be used to share code. A base class can
define member functions which are then shared across all the classes
derived from the base.

Related Documents (if any): C++ Draft Standard

Proposal Attached: X Yes ___ No, but what's your interest?
Abstract:

This proposal includes the exact wording changes needed to add
inheritance assuming the changes of Part | of CLasses in C have



WG14/N445, page 2

been accepted for the C Standard. Inheritance in this proposal is a
subset of the corresponding C++ feature and is intended to be upward-
compatible with it.

Please advise me if | have accidentally introduced incompatibilities

in this and the following proposals.

Proposal:

The wording changes are summarized in the following points.
* Classes can be declared to have a base class.

* Public members of a base class are available in the derived class
as if they had been declared in the derived class.

* Only single inheritance is supported. That is, each derived class
can have only one base class.

* Members in a derived class can redeclare the names of any member of
its chain of base classes. In effect, the scope of a derived class
hides like-named members in its base class.

* No keywords are needed for this proposal.
ISSUES:

These items are details of the proposal where the committee may wish to
consider alternatives beside what is presented here.

* In section 6.3.1, scope-qualifiers are limited to class-name
qualifiers. The global scope qualifier (e.g. ::foo) is not
included in this proposal. This capability is not directly
related to classes, although classes create more opportunities to
need such qualifiers. The committee may wish to add this
extension.

* In section 6.5.2.4, the location of the members of the base class
within a derived class is unspecified. The committee may choose
to specify that the base class starts at the same address as the
derived class object. Nothing prevents an implementation from
doing this, and it certainly makes converting pointers between base
and derived classes easier. See also 6.2.2.3 for some details.

The following are the specific changes to the Standard. Section numbers are
in reference to the International Standard ISO/IEC 9899:1990 Programming
Languages - C. Where relevant, changes affecting the TC1 defect reports

are stated where they appear in the Standard. The TC2 Defect Reports have
not been scanned for possible changes, nor has the normative addendum.

6.1.2.1 Scopes of Identifiers
Page 20, BEFORE line 30, REPLACING THIS TEXT FROM PART 1:

... and resumes for the duration of each member function definition
associated with the same class encountered later in the same

/C



WG14/N445, page 3
translation unit.

WITH:

... and resumes for the duration of each member function definition
associated with the same class encountered later in the same
translation unit. The scope of a base class also

resumes for the duration of the class declaration list and each of
the member function definitions of each class encountered later in
the same translation unit that publicly inherits from the base.

Page 20, line 35-37 IS:

If an outer declaration of a lexically identical identifier exists
in the same name space, it is hidden until the current scope
terminates, after which it again becomes visible.

SHOULD BE:

If an outer declaration of a lexically identical identifier exists

in the same name space (except within a primary-expression consisting
of an identifier with a scope-qualifier that names the scope of the

outer declaration), it is hidden until the current scope

terminates, after which it again becomes visible.

RATIONALE:

This text extends the concept of class scope to include derived
classes. The use of scope qualifiers allows member functions in

a derived class to call otherwise hidden member functions in its
base class. This idiom is common, since derived classes can then
extend the functionality implemented in a base class rather than
merely replace it.

6.2.2.3 Pointers
Page 36, line 36 IS:

... shall compare equal to the original pointer.
SHOULD BE:

... shall compare equal to the original pointer. A pointer to

a derived class type may be converted to a pointer to any of the
classes the derived class inherits and back again; the result shall
compare equal to the original pointer. A pointer to a derived

class type when converted to a pointer to any of the classes the
derived class inherits shall point at the object of the base class
type allocated within the original class. A pointer to the

allocated object of a base class type when converted to a pointer to
the derived class type of which the object is a part shall point at
the derived class object.

RATIONALE:

I



WG14/N445, page 4

Without making any guarantees about the exact layout of base classes
within derived classes, we need to guarantee that converting the
pointer correctly moves from one object to another.

This language would certainly be easier to write here if we were
to guarantee that a base class object starts at the same address
as all derived class objects. Of course, because of multiple
inheritance and virtual base classes in C++, this kind of mandate
is not really possible. So, rather than introduce a potential
incompatibility with C++ | have specified the conversion in a way
that still allows the pointer conversions to work properly.

6.3.1 Primary Expressions
Page 39, line 4 1S:
identifier

SHOULD BE:
scope-qualifier opt identifier

Page 39, line 7 AFTER:
( expression )
ADD:

scope-qualifier:
identifier ::

Page 39, line 8 BEFORE:
Semantics

ADD:
Constraints
The identifier in a scope-qualifier shall designate a visible class
tag name. The scope-qualifier shall appear in the scope of the named
class.

RATIONALE:
Scope qualifiers occur in derived classes in order to refer to
members in a base class. A frequent idiom in classes is to redefine
a member function in a derived class in order to expand on the
code in the base class. For example:

class base {
public:

void  action(int x);

no



WG14/N445, page 5

class derived : public base {
public:

void  action(double x);

b
derived::action(double x)

printf("Action called with %g\n", x);
base::action((int)x - 1);

}

In this example, the derived action function does a printf call and
“then calls the base class version of the action function.

Note that without the scope qualifier, the derived action function
could not call the base action function at all. |If the scope
qualifier were left off the call, the call would be a recursive

call to itself, which would quickly crash as the stack overflowed.

Note also that global scope qualifiers are not included. For
example:

externinti=7;

void foo()
{
int i=5;
int is
=1
printf("j = %d\n", j); /l prints j=7
}

In this example, the global scope qualifier allows one to refer to
global variables, even though they are normally hidden.

6.5.2.4 Class Specifiers
CHANGE THE Syntax FROM:
class-specifier:
class identifier opt { class-declaration-list }
class identifier
TO:
class-specifier:
class identifier opt base-class-specifier opt
{ class-declaration-list }
class identifier
ADD THE FOLLOWING SYNTAX:

base-class-specifier:



WG14/N445, page 6

: visibility opt identifier

ADD TO Constraints:

The identifier in a base-class-specifier shall name a visible class
tag name.

ADD TO Semantics:

A base-class-specifier names a base class for the new type being
declared. A class type with a base class is said to be derived
from its base and is a derived class.

- A derived class publicly inherits from another class if the derived

class

* has a base-class-specifier that contains the keyword public
and

* either names the other class as its base or its base
publicly inherits the other class.

A derived class inherits from another class if the derived class
* has a base-class-specifier that names the other class or

* the base inherits the other class.

IN Semantics AFTER:

Within a class object, the non-bit-field members and the units in
which bit-fields reside have addresses that increase in the order in
which they are declared.

ADD:
In addition, if the class has a base class, an object of the base
class type is allocated within the derived class. All references
to members of the base class refer to this allocated object.
RATIONALE:

Public base classes make their members visible to their derived
classes and this visibility recursively extends to each successive
derived class in turn.

Private base classes hide their members from derived classes.

This distinction is made to preserve compatibility with C++ where
the default visibility of a base class is private.

6.5.7 Initialization

Page 72, line 20-21 [S:

e



WG14/N445, page 7

Otherwise, the initializer for an object that has aggregate type
shall be a brace-enclosed list of initializers for the members of
the aggregate, written in increasing subscript or member order; ...

SHOULD BE:

Otherwise, the initializer for an object that has aggregate type

shall be a brace-enclosed list of initializers for the members of

the aggregate, written in increasing subscript or member order, where
a derived class with a public base class initializes the members of
the base class before the members of the derived class; ...

RATIONALE:

This language is needed to specify how inherited classes are
initialized.

/5



