Date: 5 July 1995

From: ISO/IEC JTC1/SC22/WG14 (programming language C)
To: ISO/IEC JTC1/SC22/WG21 (programming language C++)
Subject: Review of C++ draft presented for CD balloting

INTRODUCTION

WG14 continues to provide useful feedback to WG21 on the draft
C++ Standard submitted for balloting as a Committee Dratt.

As with our review during the CD registration ballot (1 February
1995), it was our hope and expectation that we could supply at

this stage a cogent list of issues whose resolution would ensure
maximum compatibility between our two closely related languages.
Given the current state of the C++ draft, however, that important
goal remains elusive:

* Substantial features still have no accompanying semantic
description. The discussion of locales (clause 22), for example,
is of particular interest to the C community and remains sorely
lacking in explanatory detail.

* All too many substantive changes have been made that are not
reflected in the resolutions published with the minutes of WG21
meetings. Change bars are too numerous to provide any guidance
to areas that have suffered real change. It is thus hard to have
any faith that portions of the document that have been nominally
stable are truly left unchanged.

* The review period is woefully short. Many members of WG14 had
only a few weeks to review a document with numerous changes since
the last review.

* Many statements obviously intended as normative are in Notes
subclauses, which are said to be non-normative. Conversely, quite
a bit of commentary still masquerades as normative text, albeit
largely toothless.

* The number of typographical errors and lurches in style continue

to show that the document is nowhere near ready for the precise review
required to determine whether compatibility between C and C++

has been adequately safeguarded.

As with our previous review, we supply here a simple compendium

of comments made by various members of WG14. If the editing process
continues past the July 1995 meeting -- as we fully expect -- WG14

will endeavor to supply additional comments as time permits.

And as always, we stand ready to supply additional guidance and

eview, to ensure that C and C++ remain "as close as possible,

but no closer."

WL

x37///95 -0

WG14 review of draft C++ Standard, page 2
UK Comments on C++ CD for Public Review

(1 am afraid we have hardly scratched the surface.)

Clause 1.1

Paragraph 2, last sentence. Delete this sentence and Annex C.1.2.
This is the first standard for C++, what happened prior to 1985 is
not relevant to this document.

Clause 1.2

Paragraph 1, change "ISO/IEC 9899:1990, C Standard" to
"ISO/IEC 9899:1990 Programming Languages -- C"

Paragraph 1, change "ISO/IEC 9899:1990/DAM 1, Amendment to C Standard" to
"ISO/IEC:1990 Programming languages -- C AMENDMENT 1: C Integrity"

Add year of current publication of ISO/IEC 2382
Clause 1.3

Paragraph 1, multibyte character. Last sentence. What is the basic
character set? Is it the basic source character set or basic
execution character set (see clause 5.2.1 of ISO 9899)? There is
an index refence for basic execution character set to this clause.

Also need to add definitions of the basic execution and basic source
character set. See ISO 9899, Clause 5.2.1.

Paragraph 1, undefined behaviour. ISO 9899 states that "Undefined
behaviouris otherwise indicated in this International Standard by the
words "undefined behaviour" or by the omission of any explicit definition
of behaviour".

The C++ standard should also adopt the rule that omission of explicit
defintion of behaviour results in undefined behaviour.

Paragraph 1, well-formed program. Other standards use the term
Conforming to describe this concept. The C++ standard should follow

this precedent. It should also introduce the concept of Strict

Conformance, that is a program that contains no undefined, implementation
defined or unspecified behaviours.

Clause 1.5, paragraph 1, second sentence. Contains a use of the
term "basic execution character set". See previous discussion.

Clause 1.8, paragraph 4. Need to include text stating that the standard
imposes no requirements on the behaviour of programs that contain
undefined behaviour.

Clause 1.8, paragraph 9, second sentence. What is a “needed side-effect"?
This paragraph, along with footnote 3 appears to be a definition
of the C standard “as-if" rule. This rule should be defined as such.

Clause 2.1, phase 8, first sentence. Change "The translation units
that will form a program are combined.” to "The translation units

&9

WG14 review of draft C++ Standard, page 3
are combined to form a program.”

Clause 2.2, paragraph 1. Delete and replace with wording from

C standard. "All occurrences in a source file of the following
sequences of three characters (called trigraph sequences) are replaced
with the corresponding single character. No other trigraph sequence
exists. Each ? that does not begin one of the above trigraphs listed
above is not changed.”

Clause 2.3, paragraph 3, first sentence. Change "... lexically analsysed
to ~... parsed ...". To agree with wording in C standard.

Clause 2.3, paragraph 3, last sentence. Delete ", even if that would
cause further lexical analysis to fail". To agree with existing, clear
wording in C standard.

Clause 2.4. This is a gratuatous difference from the Addendum
to the C standard with no technical merit. It should be deleted
and replaced by the text from the Addendum.

Clause 2.8, paragraph 3. Reserving identifiers containing a double
underscore is overly restrictive. Identifiers starting with
double underscore should be reserved.

Clause 2.9.1, paragraph 1. This is a clumsy rewrite of the description
in Clause 6.1.3.2 of the C standard. Replace by the text contained
in the two paragraphs of the Description in Clause 6.1.3.2.

Clause 2.9.1, paragraph 2. This is a clumsy rewrite of the
semantics in Clause 6.1.3.2 of the C standard. Replace by the
text contained in the two paragraphs of the Semantics in Clause 6.1.3.2.

Clause 2.9.2, paragraph 1, second sentence. What is "the machine's
character set"? Is this the basic source character set that we have
forgotten to define? Suggest that the wording from C standard, Clause
6.1.3.4, Semantics, first paragraph be used (it contains the

important concept of mapping).

Clause 2.9.2, paragraph 2. Suggest that C standard, Clause 6.1.3.4,
Semantics, second paragraph be used as the basis of a rewrite of this
paragraph.

Clause 2.9.2, paragraph 3. Suggest that C standard, Clause 6.1.3.4,
Description, paragraph 2, 3, 4, and 5 be used as the basis of a
rewrite of this paragraph.

Clause 2.9.2, paragraph 4. Ditto comment on paragraph 3.

Clause 2.9, paragraph 1. Suggest that this be replaced by C standard
Clause 6.1.3.1, Description, paragraph 1. Otherwise the term “missing"
should be replaced by "ommitted".

Clause 2.9.4. Suggest that paragraph 1, 2 and 3 be replaced by
C standard, Clause 6.1.4, all paragraphs in Description and Semantics.

WG14 review of draft C++ Standard, page 4

Clause 2.9.4, paragraph 4. Delete. The size of a string is

not equal to the number of characters it contains. The \" rule

is already covered by the text from the C standard. The first paragraph
belongs in an introductory text to the language.

Clause 5.16, syntax rule. Change "assignment-expression” to
“conditional-expression” to agree with the C standard, ISO 9899
Clause 6.3.15

Page 32 Para 9

This states :

Types bool, char, wchar_t, and the signed and unsigned integer types are
collectively called integral types. 27) A synonym for integral type is
integer type.

ISO 9899 does not include wchar_t as a member of the integral types, this
should at least be noted in Annex C, and does raise a number of
compatability issues

Page 84 Para §

The underlying type of an enumeration is an integral type, not
gratuitously
larger than int

Is this meant to be a requirement on an implementation ?

if so then the requirement should be stated positively.
i.e. an enumeration is an integral type that can represent all enumerator
values otherwise remove the not gratuitously ...

1.7 Processor compliance para 2
typo -diagnosable errors repeated

Page 6 para 18
the word builtin needsd a hypen i.e built-in

Paragraph 3.3.4 Page 20
Scope

File 1

// First file

// declare i in global namespace as per page 20 of draft
/I and has external linkage

int i=5;

File 2
//Second file

static inti= 10 ; // declare i in global namespace with internal
linkage
inty =i; //Whatis the value of y

// does :: resolve linkage to external or internal ??

WG14 review of draft C++ Standard, page 5
void f(void)
{

int i =6;
int j =::i; // Global namespace i internal or external

If an implementation is required to accept both

int main(){}

and

int main(int argc, char * argv[]){}

Is it permitted to have a prototype of both forms visible ?

int main();
int main(int, char **);

If not is a disgnostic required nn this case.

Page 77

The following two statements appear to contradict each other
The inline specifier is a hint to the implementation that inline
substitution of the function body is to be preferred to the usual

function call implementation. The hint can be ignored.

The above statement clearly indicates that inline can be ignored however
the draft goes on to state:

A function (8.3.5, 9.4, 11.4) defined within the class definition “is"
inline.

Is an implementation free to ignore the inline within a class definition ?
Page 45 para 7 [expr.call]

This section describes the promotions prior to a function call and refers

to section 4.5 (integral promotions), however section 4.5 refers to
promotion of wchar_t and bool, paragraph 7 remains silent on wchar_t and
bool leaving a question over whether promotion of these takes place prior
to the function call.

The following are points directly relating to C.
Clause 1.1
Paragraph 2, last sentence. Delete this sentence and Annex C.1.2.

This is the first standard for C++, what happened prior to 1985 is
not relevant to this document.

WG14 review of draft C++ Standard, page 6

Clause 1.2

Paragraph 1, change "ISO/IEC 9899:1990, C Standard" to
*ISO/IEC 9899:1990 Programming Languages -- C"

Paragraph 1, change "ISO/IEC 9899:1990/DAM 1, Amendment to C Standard" to
*ISO/IEC:1990 Programming languages -- C AMENDMENT 1: C Integrity"

Clause 1.3

Paragraph 1, multibyte character. Last sentence. What is the basic
character set? s it the basic source character set or basic
execution character set (see clause 5.2.1 of ISO 9899)? There is
an index refence for basic execution character set to this clause.

Also need to add definitions of the basic execution and basic source
character set. See ISO 9899, Clause 5.2.1.

Paragraph 1, undefined behaviour. 1SO 9899 states that "Undefined behaviour
is otherwise indicated in this International Standard by the words “undefined
behaviour" or by the omission of any explicit definition of behaviour".

The C++ standard should also adopt the rule that omission of explicit

defintion of behaviour results in undefined behaviour.

Paragraph 1, well-formed program. Other standards use the term
Conforming to describe this concept. The C++ standard should follow

this precedent. It should also introduce the concept of Strict Conformance,
that is a program that contains no undefined, implementation defined or
unspecified behaviours.

Clause 1.5, paragraph 1, second sentence. Contains a use of the
term “basic execution character set". See previous discussion.

Clause 1.8, paragraph 9, second sentence. What is a "needed side-effect"?
This paragraph, along with footnote 3 appears to be a definition
of the C standard "as-if" rule. This rule should be defined as such.

Clause 2.3, paragraph 3, first sentence. Change "... lexically
analsysed ..." to “... parsed ...". To agree with wording in C standard.

Clause 2.3, paragraph 3, last sentence. Delete “, even if that would
cause further lexical analysis to fail". To agree with existing, clear
wording in C standard.

Clause 2.4. This is a gratuatous difference from the Addendum
to the C standard with no technical merit. It should be deleted
and replaced by the text from the Addendum.

Clause 2.9.1, paragraph 1. This is a clumsy rewrite of the description
in Clause 6.1.3.2 of the C standard. Replace by the text contained
in the two paragraphs of the Description in Clause 6.1.3.2.

Clause 2.9.1, paragraph 2. This is a clumsy rewrite of the
semantics in Clause 6.1.3.2 of the C standard. Replace by the
text contained in the two paragraphs of the Semantics in Clause 6.1.3.2.

WG14 review of draft C++ Standard, page 7

Clause 2.9.1, footnote 16. This statement of a well know fact is not
need for the historical education of users of K&R C compilers.

Clause 2.9.2, paragraph 1, second sentence. What is "the machine's
character set"? ls this the basic source character set that we have
forgotten to define? Suggest that the wording from C standard, Clause
6.1.3.4, Semantics, first paragraph be used (it contains the

important concept of mapping).

Clause 2.9.2, paragraph 2. Suggest that C standard, Clause 6.1.3.4,
Semantics, second paragraph be used as the basis of a rewrite of this
paragraph.

Clause 2.9.2, paragraph 3. Suggest that C standard, Clause 6.1.3.4,
Description, paragraph 2, 3, 4, and 5 be used as the basis of a
rewrite of this paragraph.

Clause 2.9.2, paragraph 4. Ditto comment on paragraph 3.
Clause 2.9, paragraph 1. Suggest that this be replaced by C standard

Clause 6.1.3.1, Description, paragraph 1. Otherwise the term "missing
should be replaced by "ommitted".

Clause 2.9.4. Suggest that paragraph 1, 2 and 3 be replaced by
C standard, Clause 6.1.4, all paragraphs in Description and Semantics.

Clause 2.9.4, paragraph 4. Delete. The size of a string is

not equal to the number of characters it contains. The \" rule

is already covered by the text from the C standard. The first paragraph
belongs in an introductory text to teh language.

Clause 3.9, paragraph 6, last sentence. In ISO 9899 an incomplete
type is not an object type (Clause 6.1.2.5, first paragraph). Defining
an "incompletely-defined object type" is a needless incompatibility
with ISO 9899. Use another term.

Clause 3.9, paragraph 7, last sentence. 1SO 9899 allows a typedef
declaration of an array of unknown size to be later completed for

a specific object (Clause 6.5.7, example 6). C++ should also

allow such a usage. Disallowing this construct is a needless
incompatibility.

Il indicates meatier comments.

3.6.2. The latitude with which static initialization might occur is

problematic for use of the floating-point environment, viz. the floating-point
exception flags and rounding direction modes required by IEC559. The sequence
{ clear-overflow-flag, compute, test-overflow-flag } would be defeated if the
implementation chose to execute some overflowing static initializations

between the clear and test. The sequence { set-special-rounding, compute,
restore-usual-rounding } could affect the results of static initializations

the implementation chose to execute between the set and restore. In order to
support the floating-point environment, some implementations, depending on

WG14 review of draft C++ Standard, page 8

their initialization model, might need to insulate static initialization with
say { save-FP-environment, set-default-FP-environment,
execute-initializations, restore-FP-environment }. A note to this effect
would be helpful.

3.9.1, P10, Box 21. Yes, say "at least as much range and precision”. Both
are desired, and one doesn't imply the other.

5, P4. The first sentence may not be clear. | assume "where the operators
really are” means the rearrangement in question would not change values.
Better would be to disallow rearrangement (except by the as-if rule).
"Rearrangement” is better than “regrouping", as the distributive law is
problematic too.

11l 5, P12. There's no mention of license for wide evaluation of floating
expressions, as in 3.2.1.5 of the C standard. Wide evaluation is needed by
the host of systems based on wide registers.

17.3.1.1, P10, Table 15. Typo: unititialized_fill

17.3.3.1.2, P1. This seems to say that a header can optionally declare or
define any names it wishes. This statement may have been taken out of context
from the C standard, where, | thought, the optional reserved names were
confined to those in the subsequent bullets.

17.3.3.2, P1. Sentence is difficult to parse.

17.3.4.2, P1. Footnote says masking macros are disallowed. Why disallow
them?

Il 17. Assuming wide expression evaluation is allowed, math functions should
be able to have retumn types appropriate to the implementation's expression
evaluation method. E.g. if the minimum evaluation format is double, then cos
should have the prototypes

double cos(float);

double cos(double);

long double cos(long double);
(Note this doesn't affect signatures.)

17.3.4.8, P3, Box 70. | think it's right to not require C functions to throw
exceptions, but why prohibit it?

18.2.1.1. Is tinyness_before actually useful for any programming task? Being
in the interface makes the diligent programmer worry about whether she needs
to consider it. The IEEE 754 (IEC 559) standardization group regarded it as
an implementation option that didn't matter to the user.

18.2.1.2, P23, 27. Footnote says these are equivalent to xxx_MIN_EXP and
xxx_MAX_EXP, but their definitions don't imply that. Better to use the same
wording as in the C standard.

18.2.1.2, P23, 25, 27, 29. These refer to "range”, which is intended to imply
normalized. "Range of normalized floating-point numbers", as in the C
standard, would avoid the ambiguity.

18.2.1.2, P61. round_style would be more useful if its value reflected the

WG14 review of draft C++ Standard, page 9

current execution-time rounding style, which can be changed dynamically on
most systems, including all IEC559 ones.

18.2.1.4, P2. Example is inconsistent in that is_iec559 is true but
has_denorm is false -- IEC559 requires denorms.

19.1. The hierarchy of exceptions is confusing. (1) What are the differences
between domain_error, invalid_argument, and out_of_range? (2) out_of_range
and range_error sound like the same thing but aren't. (3) In mathematics
(though not the C standard), domain refers to argument values and range to
return values, but here out_of_range refers to argument values. (4) How do
they map to the IEC559 exceptions (invalid, overflow, underflow, div-by-zero,
and inexact)?

19.1. | believe (and hope) there's not a requirement that builtin operators
on builtin types or standard math functions throw any of these exceptions, but
a reader might leap to the conclusion that they do.

11 26.2. The complex library provides a subset of the capabilities one might
expect from builtin complex types. A description of what capabilities are and

are not supported would be very helpful. What conversions? Which among
complex<int>, complex<long>, complex<float>, and complex<double> have implicit
conversions? What (mixed mode) operations? Do integer and complex operands
mix (e.g. complex_z * 2)? Is double_complex_z * 2.0L OK? Without this
description the reader must infer from the overloading rules. (It appears

there are no implicit conversions from complex to real nor from wider to

narrower among complex<long double>, complex<double>, and complex<float>,
which presumably allows for automatic “promotions” from real to complex and
from narrower to wider complex types. Saying so much -- whatever is correct

-- would be helpful.)

11126.2 In reviewing the complex library I'm further confounded by not being
able to try it. It uses member templates, which aren't implemented in either
of the two compilers | have access to. Are there enough implementations of
this?

26.2 (and elsewhere). The lack of rationale makes review more difficult.

26.2, P1. Typo in the second divide operator.

26.2.1. What are the requirements for type X?

111 26.2.2. Compound assignments should be overloaded for real operands.
This is CRITICAL for consistency with IEC559 and for efficiency (see section
2.3.6 of "Complex C Extensions", Chapter 6 of X3J11's TR on Numerical C
Extensions), particularly since the binary operators are defined in terms of

the compound assignments. complex_z *= 2.0 must not entail a conversion of
2.0 to complex.

26.2.2. Why initialize re and im to 07.

26.2.3. How do the default arguments like T re = T() apply to builtin types
like int?

26.2.4. The class declarations for the compound assignments use member
templates, but they don't show up here. Likewise the complex(const

WG14 review of draft C++ Standard, page 10
complex<X>&) constructor is missing.

11l 26.2.5. Definitions for binary operators refer to compound assignments,

but compound assignments aren't declared for complex<T> op=T. Thisis a
deficiency in the compound assignments (see above). Also the semantics are
wrong for T op complex<T>, as they entail a conversion of T to complex<T> (see
above).

26.2.5. For ==, typo: |hsP.real

26.2.5. For ==, the Returns and Notes parts are awkward.
26.2.5. For I=, typo in Returns part.

26.2.6. abs is missing.

26.2.6. Can't review the two TBS.

26.2.6. | believe the term "norm" commonly refers to the square root of the
squared magnitude (i.e. abs), and not the squared magnitude. Is a function
for the squared magnitude needed? Note that the squared magnitude can be
computed from abs with only deserved over/underflow, but not vise versa.

26.2.6. Typos in argument list for polar.

26.2.7. | don't think atan2 should be overloaded for complex arguments? How
would it be defined?

26.2.7. log10(z) is easily computed as log(z)/log(10.0), so isn't really
necessary.

11 26.2.7. Branch cuts and ranges need to be specified for functions. See
section 3 of "Complex C Extensions", Chapter 6 of X3J11's TR on Numerical C
Extensions.

26.5. There's no long double version of Idexp.
26.5. The float version of modf is out of alphabetical order.

26.5. pow doesn't accommodate mixed mode calls. E.g. pow(2.0f, 3.0) is
ambiguous, matching both pow(float,float) and pow(float,int). pow(2.0, 3L) is
ambiguous too. A description (clearer than the overloading rules) would be
helpful. Maybe more overloads are desirable.

26.5. New overloads make math functions ambiguous for integer arguments, e.g.
atan(1) would be ambiguous. C++ would be more restrictive than C in this
respect. Of course, more overloads could solve the problem.

I1126.5. The functions in <fp.h> and <fenv.h>, specified in "Floating-Point
C Extensions", Chapter 5 of X3J11's TR on Numerical C Extensions, support a
substantially broader spectrum of numerical programming.

17.3.1.3:
A freestanding implementation doesn't include <stdexcept>,

WG14 review of draft C++ Standard, page 11

which defines class exception, needed by <exception>.
Should probably move class exception to <exception>.

17.3.3.1:
A C++ program must be allowed to extend the namespace std if only
to specialize class numeric_limits.

17.34.1;
Paragraph 4 is a repeat.

18.2.1;
float_rounds_style should be float_round_style (correct once).

18218
Paragraph 2 is subsumed by the descriptions of radix, epsilon(),
and round_error(). Should be removed here.

18.2.1.1:
Paragraph 3 is repeated as 18.2.1.2, paragraph 50, where it belongs.
Should be removed here.

18.2.1.1:

Should say that numeric_limits<T> must be able to return T(0).
Should say that round_style defaults to round_indeterminate,
not round_toward_zero.

18.2.1.2:
denorm_min() does *not* return the minimum positive normalized value.
Should strike the mention of this function in paragraph 2.

18.2.1.2:
Paragraph 22 must supply a more precise definition of “"rounding error."

18.2.1.2:
Paragraph 23 must replace *is in range" with
"'is a normalized value".

18.2.1.2:
Paragraph 25 must replace is in range" with
’is a normalized value".

18.2.1.2:
Paragraph 27 must replace “is in range" with
is a finite value".

18.2.1.2:

Paragraph 29 must replace “is in range" with
“'is a finite value".

18.2.1.2:
In paragraph 41, ““flotaing" should be *floating".

18.2.1.3:
Semantics must be specified for enum float_round_style.

18.5.1:

WG14 review of draft C++ Standard, page 12

type_info::operator!=(const type_info&) is ambiguous Ly
in the presence of the template operators in <utility>, anditis
unnecessary. It should be removed.

18.6.1.1:

Paragraph 1 incorrectly states that bad_exception is thrown by the
implementation to report a violation of an exception-specification.
Such a throw is merely a permissible option.

18.7:
There are five Table 28s.

19.1.1:
exception(const exception&) should not be declared with the
return type exception&. (Error repeated in semantic description.)

20.1:

Allocators are described in terms of **memory models" which is an
undefined concept in Standard C++. The term should be *defined* here
as the collection of related types, sizes, etc. in Table 33 that
characterize how to allocate, deallocate, and access objects of

som managed type.

20.1:

Paragraph 3 talks about ““amortized constant time" for allocator
operations, but gives no hint about what parameter it should be
constant with respect to.

20.1:
a.max_size() is *not* *‘the largest positive value of X::difference_type."
It is the largest valid argument to a.allocate(n).

20.1:

Table 33 bears little resemblance to the currently accepted version
of class allocator (though it should, if various bugs are fixed, as
described later.) Essentially *every* item in the "expression' column
is wrong, as well as all the X:: references elsewhere in the table.

20.3:
binder1st is a struct in the synopsis, a class later.
Should be a class uniformly, like binder2nd.

20.3.5:
class unary_negate cannot return anything. Should say that its
operator() returns !pred(x).

20.3.6.1:
binder1st::value should have type Operation::first_argument_type,
not argument_type.

20.3.6.3:
binder2nd::value should have type Operation::second_argument_type,
not argument_type.

20.3.7:
“*Shall" is inappropriate in a footnote, within a comment, that

WG14 review of draft C++ Standard, page 13
refers to multiple memory models not even recognized by the Standard.

20.4:

return_temporary_buffer shouldn't have a second (T*) parameter.
It's not in STL, it was not in the proposal to add it, and

it does nothing.

20.4.1:
allocator::types<T> shows all typedefs as private.
They must be declared public to be usable.

20.4.1:

It is not clear from Clause 14 whether explicit template member

class specializations can be first declared outside the containing

class. Hence, class allocator::types<void> should probably be declared
inside class allocator.

20.4.1:

The explicit specialization allocator::types<void> should include:
typedef const void* const_pointer;
It is demonstrably needed from time to time.

20.4.1:
Footnote 169 should read **An implementation,"
not **In implementation."”

20.4.1.1:
allocator::allocate(size_type, types<Us>::const_pointer) has no
semantics for the second (hint) parameter.

20.4.1.1:

allocator::allocate(size_type, types<Us>::const_pointer) requires
that all existing calls of the form A::allocate(n) be rewritten

as al.allocate<value_type, char>(n, 0) -- a high notational

price to pay for rarely used flexibility. If the non-template form
of class allocator is retained, an unhinted form should

be supplied, so one can write al.allocate<value_type>(n).

20.4.1.1:

allocator::allocate(size_type, types<U>::const_pointer) should
return neither new T nor new T[n], both of which call the default
constructor for T one or more times. Note that deallocate, which
follows, calls operator delete(void *), which calls no destructors.
Should say it returns operator new((size_type)(n * sizeof (T))).

20.4.1.1:

allocator::max_size() has no semantics, and for good reason. For
allocator<T>, it knew to return (size_t)(-1) / sizeof (T) --

the largest sensible repetition count for an array of T. But the
class is no longer a template class, so there is no longer a T to
consult. Barring a general cleanup of class allocator, at the least
max_size() must be changed to a template function, callable as
either max_size<T>() or max_size(T *).

20.4.1.1:

WG14 review of draft C++ Standard, page 14

A general cleanup of class allocator can be easily achieved by
making it a template class once again:
template<class T> class allocator {
public:

typedef size_t size_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef const T* const_pointer;

typedef T& reference;

typedef const T& const_reference;

typedef T value_type;

pointer address(reference x) const;

const_pointer address(const_reference x) const;

pointer allocate(size_type n);

void deallocate(pointer p);

size_type init_page_size() const;

size_type max_size() const;

b
The default allocator object for a container of type T would then
be allocator<T>(). All of the capabilities added with the Nov. '94
changes would still be possible, and users could write replacement
allocators with a *much* cleaner interface.

20.4.1.2:

operator new(size_t N, allocator& a) can't possibly return
a.allocate<char, void>(N, 0). It would attempt to cast the
second parameter to allocator:types<void>:.const_pointer,
which is undefined in the specialization allocator::types<void>.
If related problems aren't fixed, the second template argument
should be changed from void to char, at the very least.

20.4.1.2:
If allocator is made a template class once again, this version

of operator new becomes:
template<class T>
void *operator new(size_t, allocator<T>& a);

20.4.1.3:

The example class runtime_allocator supplies a public member
allocate(size_t) obvoously intended to mask the eponymous
function in the base class allocator. The signature must be
allocate<T, U>(size_t, types<Us>::const_pointer) for that to
happen, however. The example illustrates how easy it is to
botch designing a replacement for class allocator, given its
current complex interface. (The example works as is with the
revised template class allocator described earlier.)

20.4.2:
raw_storage_iterator<Ol, T>::operator*() doesn't return “*a reference
to the value to which the iterator points.” It returns *this.

20.4.3.1:

Template function allocate doesn't say how it should “"obtain a
typed pointer to an uninitialized memory buffer of a given size."
Should say that it calls operator new(size_t).

WG14 review of draft C++ Standard, page 15

20.4.3.2:
Template function deallocate has no semantics. Should say that
it calls operator delete(bufter).

20.4.3.5:

get_temporary_buffer fails to make clear where it **finds the largest
buffer not greater than ..." Do two calls in a row **find" the same
buffer? Should say that the template function allocates the buffer

from an unspecified pool of storage (which may be the standard heap).
Should also say that the function can fail to allocate any storage

at all, in which case the “first' component of the return value is

a null pointer.

20.4.3.5:

Strike second parameter to return_temporary_buffer, as before.
Should say that a null pointer is valid and does nothing.

Should also say that the template function renders indeterminate
the value stored in p and makes the returned storage available
for future calls to get_temporary_buffer.

20.4.4:

Footnote 171 talks about **huge pointers" and type “long long."
Neither concept is defined in the Standard (nor should it be).
This and similar comments desperately need rewording.

20.4.4.3:
Header should be “"uninitialized_fill_n", not “"uninitialized_{fill."

20.4.5:

When template class auto_ptr ““holds onto" a pointer, is that the
same as storing its value in a member object? If not, what can it
possibly mean?

20.4.5:
auto_ptr(auto_ptr&) is supposed to be a template member function.

20.4.5:
auto_ptr(auto_ptr&) is supposed to be a template member function.

20.4.5:
auto_ptr<T>::operator= should return auto_ptr<T>&, not void, according
to the accepted proposal.

20.4.5.1:
Need to say that auto_ptr<T>::operator= returns *this.

20.4.5.2:

auto_ptr<T>::operator->() doesn't return get()->m -- there is no m.
Should probably say that ap->m returns get()->m, for an object ap
of class auto_ptr<T>.

20.4.5.2:
auto_ptr<T>::release() doesn't say what it returns. Should say
it returns the previous value of get().

WG14 review of draft C++ Standard, page 16

20.4.5.2:

auto_ptr<T>:reset(X*) doesn't say what it returns, or that it deletes
its current pointer. Should say it executes "delete get()" and
returns its argument.

20.5:
The summary of <ctime> excludes the function clock() and the
types clock_t and time_t. Is this intentional?

21.1:

template function operator+(const basic_string<T,tr,A> lhs,
const_pointer rhs) should have a second argument of type

const T *rhs.

- [
Paragraph 1 begins, **In this subclause, we call..." All first person
constructs should be removed.

21.1.1.1:
string_char_traits::ne is hardly needed, given the member eq.
It should be removed.

21.1.1.1:

string_char_traits::char_in is neither necessary nor sufficient.
It simply calls is.get(), but it insists on using the basic_istream
with the default ios_traits. operator>> for basic_string still has
to call is.putback(charT) directly, to put back the delimiter that
terminates the input sequence. char_in should be eliminated.

21114

string_char_traits::char_out isn't really necessary.

It simply calls os.put(), but it insists on using the basic_ostream
with the default ios_traits. char_out should be eliminated.

21.1.1.1:

string_char_traits::is_del has no provision for specifying a locale,
even though isspace, which it is supposed to call, is notoriously
locale dependent. is_del should be eliminated, and operator>> for
strings should stop on isspace, using the istream locale, as does
the null-terminated string extractor in basic_istream.

21.1.1.1:

string_char_traits is missing three important speed-up functions,

the generalizations of memchr, memmove, and memset. Nearly all the
mutator functions in basic_string can be expressed as calls to these
three primitives, to good advantage.

21.1.1.2:

No explanation is given for why the descriptions of the members of
template class string_char_traits are “*default definitions."

If it is meant to suggest that the program can supply an explicit
specialization, provided the specialization satisfies the semantics
of the class, then the text should say so (here and several other
places as well).

2112

WG14 review of draft C++ Standard, page 17

string_char_traits::eos should not be required to return the

result of the default constructor char_type() (when specialized).
Either the specific requirement should be relaxed or the function
should be eliminated.

5 W B B

string_char_traits::char_in, if retained, should not be required to
return is >> a, since this skips arbitrary whitespace. The proper
return value is is.get().

21.1.1.2:
string_char_traits::is_del, if retained, needs to specify the locale
in effect when it calls isspace(a).

21.1.1.3:

Paragraph 1 doesn't say enough about the properties of a ““char-like
object." It should say that it doesn't need to be constructed or
destroyed (otherwise, the primitives in string_char_traits are
woefully inadequate). string_char_traits::assign (and copy) must
suffice either to copy or initialize a char_like element.

The definition should also say that an allocator must have the
same definitions for the types size_type, difference_type, pointer,
const_pointer, reference, and const_reference as class
allocator::types<charT> (again because string_char_traits has no
provision for funny address types).

21.1.1.4:
The copy constructor for basic_string should be replaced by two

constructors:

basic_string(const basic_string& str);

basic_string(const_basic_string& str, size_type pos,
size_type n = npos, Allocator& = Allocator());

The copy constructor should copy the allocator object, unless

explicitly stated otherwise.

21.1.1.4:
basic_string(const charT*, size_type n, Allocator&) should be

required to throw length_error if n > max_size(). Should say:
Requires: s shall not be a null pointer

n <= max_size()
Throws: length_error if n > max_size().

21.1.1.4:
basic_string(size_type n, charT, Allocator&) is required to throw

length_error if n == npos. Should say:
Requires: n <= max_size()
Throws: length_error if n > max_size().

21:1.18;

basic_string::size() Notes says the member function *Uses
traits::length(). There is no reason for this degree of
overspecification. The comment should be struck.

WG14 review of draft C++ Standard, page 18

21.1.1.6:
basic_string::resize should throw length_error for n >= max_size(),

not n == npos.

21.1.1.6:
resize(size_type) should not have a Returns clause -- it's a void
function. Clause should be labeled Effects.

21.1.1.6:
resize(size_type) should call resize(n, charT()), not
resize(n, eos()).

21.1.16:

basic_string::resize(size_type) Notes says the member function
**Uses traits::eos(). It should actually use charT() instead.

The comment should be struck.

21.1.31.6:

basic_string::reserve says in its Notes clause, “lt is guaranteed
that..." A non-normative clause cannot make guarantees. Since the
guarantee is important, it should be labeled differently.

(This is one of many Notes clauses that make statements that should
be normative, throughout the description of basic_string.)

21.1.1.8.2:
basic_string::append(size_type n, charT c¢) should return
append(basic_string(n, ¢)). Arguments are reversed.

21.1.1.8.3:
basic_string::assign(size_type n, charT c) should return
assign(basic_string(n, c)). Arguments are reversed.

21.1.1.8.4:
basic_string::insert(size_type n, charT c¢) should return
insert(basic_string(n, ¢)). Arguments are reversed.

21.1.1.84:

basic_string::insert(iterator p, charT ¢) should not return p,
which may well be invalidated by the insertion. It should return
the new iterator that designates the inserted character.

21.1.1.8.4:
basic_string::insert(iterator, size_type, charT) should return
void, not iterator. (There is no Returns clause, luckily.)

21.1.1.8.5:

basic_string::remove(iterator) says it “"calls the character's
destructor" for the removed character. This is pure fabrication,
since constructors and destructors are called nowhere else, for
elements of the controlled sequence, in the management of the
basic_string class. The words should be struck.

21.1.1.8.5:

basic_string::remove(iterator, iterator) says it “*calls the character's
dgstructor" for the removed character(s). This is pure fabrication,
since constructors and destructors are called nowhere else, for

WG14 review of draft C++ Standard, page 19

elements of the controlled sequence, in the management of the
basic_string class. The words should be struck.

21.1.1.8.5:

basic_string::remove(iterator, iterator) Complexity says ""the
destructor is called a number of times ..." This is pure fabrication,
since constructors and destructors are called nowhere else, for
elements of the controlled sequence, in the management of the
basic_string class. The Complexity clause should be struck.

21.1.1.8.6:
replace(size_type pos1, size_type, const basic_string&,...) Effects
has the expression *"size() - &pos1." It should be “size() - pos1.”

21.1.1.8.6:
basic_string::replace(size_type, size_type n, charT c) should return
replace(pos, n, basic_string(n, ¢)). Arguments are reversed.

21.1.1.8.8:

basic_string::swap Complexity says ““Constant time." It doesn't
say with respect to what. Should probably say, “with respect to
the lengths of the two strings, assuming that their two allocator
objects compare equal." (This assumes added wording describing
how to compare two allocator objects for equality.)

21.1.1.9.1:
basic_string::find(const charT*, ...) Returns has a comma missing
before pos argument.

21.1.1.9.8:

basic_string::compare has nonsensical semantics. Unfortunately,
the last version approved, in July '94 Resolution 16, is also
nonsensical in a different way. The description should be
restored to the earlier version, which at least has the virtue

of capturing the intent of the original string class proposal:

1) If nis less than str.size() it is replaced by str.size().

2) Compare the smaller of n and size() - pos with traits::compare.
3) If that result is nonzero, return it.

4) Otherwise, return negative for size() - pos < n, zero for

size() - pos == n, or positive for size() - pos > n.

21.1.1.10.3:

operator!=(const basic_string&, const basic_string&) is ambiguous
in the presence of the template operators in <utility>, and it is
unnecessary. It should be removed.

21.1.1.10.5:

operator>(const basic_string&, const basic_string&) is ambiguous
in the presence of the template operators in <utility>, and i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>