1 o /://,.’/ / 7.

X 35/
Defect Report #142 SC22/WG14 Page 1
Defect Report #142
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.
In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.
This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.
Defect Report UK 026: Reservation of macro names
Is it permitted to #unde£ a reserved macro name? Consider the translation unit:
#include <errno.h>
#undef EASTER
#undef EDOM
#undef _ ERRNO_BASE
int error (void) { return errno == ERANGE; }
Considering each of the three #unde£ directives independently, is each directive permitted in a strictly
conforming program? Is the translation unit strictly conforming? ,
Subclause 7.1.3 describes various classes of reserved identifiers, and then states:
If the program declares or defines an identifier with the same name as an identifier reserved in
that context (other than as allowed by 7.1.7), the behavior is undefined.
However, this does mention the use of #unde£. Subclause 7.1.7 does so, for certain identifiers, but in rather
ambiguous words:

The use of #unde£ to remove any macro definition will also ensure ...
It has been suggested that this wording merely describes a strictly conforming coding technique, rather than
establishing a special case (rather like the wording about placing the name in parentheses does).
Therefore, can a strictly conforming program #unde£ a name which is reserved for any use at that point?

There is a good reason to allow such an #unde £. A program can make use of a identifier which is convenient
but would otherwise be reserved (for example, the identifier EASTER). There is also a good reason to forbid
it: the macro ERANGE might actually be defined as (_ ERRNO_BASE + 42). This leads to the conclusion
that it might be best to permit it for some names but not others.

A further example [inserted at the request of BSI] is the translation unit:

#include <stdlib.h>

#undef __ INCLUDED_STDLIB H

#include <stdlib.h>

Suggested Technical Corrigendum

Add to the end of subclause 7.1.3:

If the program removes (with #unde£) the macro definition of an identifier in the first group listed above,
the behavior is undefined.

Page 2 SC22/WG14 Defect Report #143

Defect Report #143
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.

In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.

This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.

Defect Report UK 027: fopen modes
[BSI characterize this issue as minor.]
The definition of file opening modes is self-contradictory.
Subclause 7.9.5.3 reads in part:
The argument mode points to a string beginning with one of the following sequences:
and then lists all of z, x+, b, and xb+ or z+b, with different meanings. Obviously, it is possible for a
string to begin with up to three of these simultaneously, and thus the quoted text is contradictory.
Also, the wording is confusing since it can easily be misread as “beginning with exactly one of the following
sequences,” which would prohibit those of the specified modes that are longer than one character,
Suggested Technical Corrigendum
Change the quoted text to:

The mode is determined by the longest match of the following sequences to the initial characters
of the string pointed to by the argument mode; at least the initial character shall match.

Zi

Defect Report #144 SC22/WG14 Page 3

Defect Report #144
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.
In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.
This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.
Defect Report UK 028: Preprocessing of preprocessing directives
Can the white space preceeding the initial # of a preprocessing directive be derived from macro expansion?
Consider the following code extract:
#define EMPTY
EMPTY include <file.h> /* Line A */
EMPTY # include <file.h> /* Line B */
Line A is clearly forbidden by subclause 6.8:
The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

However, this text does not appear to forbid line B. Nor does subclause 6.8.3.4:
The resulting completely macro-replaced preprocessing token sequence is not processed as a
preprocessing directive even if it resembles one. If that subclause applies only to the expansion
of EMPTY, it is not relevant. If it applies to both the expansion and the following preprocessing
token sequence, then no subsequent preprocessing directive could ever be processed.

Is line B strictly conforming, or does it violate a constraint (and if so, which), or does it cause undefined
behavior?
Suggested Technical Corrigendum
In subclause 6.8 Description, change:
A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #
preprocessing token that is either ...

A preprocessing directive consists of a sequence of preprocessing tokens that begins with a #
preprocessing token that (at the start of translation phase 4, before any preprocessing takes
place) is either ...

Page 4 SC22/WG14 Defect Report #145 e,

Defect Report #145
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.
In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.

This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.

Defect Report UK 029: Constant expressions
There is a confusion of contextual levels in subclause 6.4. Subclause 6.4 lists four possible forms for a
constant expression in an initializer:

Such a constant expression shall evaluate to one of the following:

an arithmetic constant expression,

a null pointer constant,

an address constant, or

an address constant for an object type plus or minus an integral constant expression.

The first two of these are syntactic forms, not something that a syntactic form would evaluate to. The third
is the result of an evaluation, and the fourth is a compound of the two types of entity.

This confusion makes it unclear whether expressions like:

(int *)0

which is not a null pointer constant, or

&x[5] - &x[2]

which is clearly a constant, are permitted in initializers.

Suggested Technical Corrigendum

Replace the quoted text with:
Such a constant expression shall be either an arithmetic constant expression, a null pointer
constant, or an address constant expression.

In the second subsequent paragraph, change:

An address constant is a pointer to an lvalue designating an object of static storage duration, or
to a function designator; it shall be created explicitly, using the unary & operator, or implicitly

to:
An address constant expression shall have pointer type, and shall evaluate to:
a null pointer,
the address of a function, or
the address of an object of static storage duration plus or minus some integer.
The address may be created explicitly, using the unary & operator, or implicitly ...

26

Defect Report #146 SC22/WG14 Page §

Defect Report #146
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.

In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.

This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.

Defect Report UK 030: Nugatory constraint
[BSI characterize this issue as minor.]
The constraint of 6.1.2 serves no purpose. Subclause 6.1.2 states in part:
Constraints
In translation phases 7 and 8, an identifier shall not consist of the same sequence of characters
as akeyword.
Semantics

... When preprocessing tokens are converted to tokens during translation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is converted to
a keyword.

Given the latter text [added in Technical Corrigendum 1, reference DR 017 Q39], the constraint can never
be violated.

Suggested Technical Corrigendum
Delete the constraint of subclause 6.1.2.

Page 6 | SC22/WG14 Defect Report #147

Defect Report #147
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.
In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.

This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.

Defect Report UK 031: Sequence points in library functions
There is no requirement for a sequence point to occur within a library function, since it might not be written
in C. Consider the following code:

#include <string.h> char s[10];

[
(strepy)(s, "Testing") [0] = 'X’;
Any function written in C must have a sequence point after the last full expression evaluated (which will

be the returned value if there is one), so if st rcpy were a C function, the assigningof / T’ to s [0] would
be completed before the call returned.

However, since library functions might not be written in C, they might not have such a sequence point. If il
not, then the above statement is in breach of the requirements of the second paragraph of subclause 6.3.

Suggested Technical Corrigendum
Add to the end of subclause 7.1.7:
There is a sequence point immediately before a library function returns.
Add to the end of annex C:
Immediately before a library function returns (7.1.7).
Add areference to 7.1.7 in the Forward References of 5.1.2.3, and in the relevant Index entry.

Defect Report #148 SC22/WG14 Page 7

Defect Report #148

Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather

Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.
In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.
This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.
Defect Report UK 032: Defining library functions
Subclause 7.1.7 is unclear about when it is permitted to declare a library function. Consider the following
translation unit:

#include <math.h>

double (sin)(double);
Subclause 7.1.7 states in part:

Any function declared in a header may be additionally implemented as a macro defined in the
header, so a library function should not be declared explicitly if its header is included.

Since the wording uses the term "should", this does not appear to actually be a requirement on programs,
and the code appears to be strictly conforming; in other words, the Standard here simply uses overly
restrictive wording while trying to assist readers, and does not actually forbid the above code.

Is this interpretation correct?

Note that code such as the above is useful if the #include is conditionally compiled or is within a header
not under the control of the code’s author.

‘Suggested Technical Corrigendum
If the intent was to forbid such a declaration, then change the quoted text to:
A library function shall ..ot be declared explicitly if its header is included.
If the intent was to allow the macros described in subclause 7.1.7 to be object-like macros (though other
wording in 7.1.7 appears to forbid this), then change the quoted text to:
A library function must not be declared explicitly if its header is included, unless any macro
definition of the name has been removed with #undef£.
If the intent was to allow the example declaration, then change the quoted text to:

Any function declared in a header may be additionally implemented as a macro defined in the
header, so one of the techniques below should be used to ensure that any explicit declaration
of a library function is not affected by any such macro.

AN

Page 8 SC22/WG14 Defect Report #149

Defect Report #149
Submission Date: 23 Feb 95
Submittor: BSI
Source: Clive D.W. Feather
Question

Submitted to BSI by Clive D.W. Feather <clive@sco.com>.

In this Defect Report, identifiers lexically identical to those declared in standard headers refer to the
identifiers declared in those standard headers, whether or not the header is explicitly mentioned.

This Defect Report has been prepared with considerable help from Mark Brader, Jutta Degener, Ronald
Guilmette, and a person whose employment conditions require anonymity. However, except where stated,
opinions expressed or implied should not be assumed to be those of any person other than myself.

Defect Report UK 033: The term “variable”

[BSI characterize this issue as minor.]

The term “variable” is used in subclause 7.7.1.1, but is never defined in the Standard.
Suggested Technical Corrigendum

In subclause 7.7.1.1, change:

... or refers to any object with static storage duration other than by assigning a value to a static
storage duration variable of type volatile sig atomic_t.

to:

... or refers to any object with static storage duration other than by assigning a value to an object
declared as volatile sig_atomic_t.

30

