& - i
Document Number: WG14 N777/X3J11 fi:_ﬁid

C9X Revision Proposal

Title: Classes in C - Part 1: Basic Classes
Author: Robert Jervis
Author Affiliation: Sun Microsystems, Inc.
Postal Address: 2550 Garcia Ave., Mountain View, CA 94043 USA
E-mail- Address: robert.jervis@eng.sun.com
Telephone Number: +1 415 3367964
Fax Number: +1 415 9640946
Sponsor:
Date: '1995-04-21
Proposal Category:
Editorial change/non-normative contribution
" Correction
X New feature
Addition to obsolescent feature list
__ Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
__ Environment
X Language
Preprocessor
__ Library
__ Macro/typedef/tag name
__ Function
___ Header
Other (please specify)
Prior Art: C++
Target Audience:

These features are useful to a wide range of programmers. The
facilities help improve problems of name-space pollution by
grouping member functions into classes. Public and private data
members help control access to data structures so that the
implementation can be more effectively separated from the
interface of a piece of code. ’

Classes have proven to be especially helpful in writing windowing
applications, graphics and data base applications.

Related Documents (if any): C++ Draft Standard

Proposal Attached: X Yes __ No, but what’s your interest?
Abstract:

This proposal includes the exact wording changes needed to add

class types to the C Standard. Class types in this proposal are a
subset of C++ and are intended to be upward-compatible with it.
Please advise me if I have accidentally introduced incompatibilities
in this and the following proposals.

Proposal:

The wording changes are summarized in the following points.
* Both member data and functions can be declared.

* Calling member functions uses the same syntax as C++.

Iés]

ISSUES:

These items are details of the proposal where the committee may wish to

Only prototypes may appear inside a class declaration. No inline
member function definitions are allowed.

Members are private by default, as in C++. —

Members can be declared to be public or private. Protected members
may not be declared (these are only relevant if inheritance is also

supported) .

The object mentioned in a member function call is passed as a hidden
parameter. This hidden parameter can be referenced using the
identifier this.

Static members, including static member functions are not included
in this proposal.
Member functions can be qualified with const and volatile qualifiers.

The proposal defines four new keywords:

class
private
public
this

Inheritance, virtual functions, constructors and destructors are
addressed in the next proposals. As a result they are not included
here.

consider alternatives beside what is presented here.

*

This proposal uses the term 'member function’ for members of
classes with function type. The much shorter and easier to use
name ‘method’ is also widely used in programming literature. The
word ‘method’ does not convey, however, the nature of the entity
being named as well as ‘member function’. A simple search and
replace of one term for the other is all that is needed if the
committee would prefer to use ‘method’.

The ’"this’ keyword could be defined as a normal identifier that
has a special meaning inside member functions. In C++ it is a
keyword, but can only be used meaningfully inside member functions.
If we want to preserve existing C code that might use ‘this’ as

a variable name, we could preserve that code and avoid one keyword.
See sections 6.1.1 and 6.3.1 for details.

The :: token proposed for member function definition syntax could
be described in the grammar as two adjacent colon tokens. This
would avoid adding a new token, but risks porting C code to C++
because we would allow white space between the colons and C++ would
not. See sections 6.1.6, 6.5.2.4 and 6.5.4 for the details.

This proposal makes no promises about common initial sequences of
members in different classes, where the existing Standard does make
promises for structure types. See section 6.3.2.3 for the details.

This proposal makes class tags behave exactly like existing C —
structure tags. That is, in C++ tags can be used as normal

identifiers in effect making them typedefs. I think that the

issue of tags as typedefs is a more general issue, and not one

limited to classes. As a result, I have done nothing to change

C’s treatment of tags. See section 6.5.2.3 for details.

Vi

The following are the specific changes to the Standard. Section numbers are
in reference to the International Standard ISO/IEC 9899:1990 Programming
Languages - C. Where relevant, changes affecting the TCl defect reports

are stated where they appear in the Standard. The TC2 Defect Reports have
not been scanned for possible changes, nor has the normative addendum.

6.1.1 Keywords

ADD THE FOLLOWING KEYWORDS TO THE LIST:
class
private
public
this
6.1.2 Identifiers
Page 20, line 2, IS:

a tag or a member of a structure, union, or enumeration;

SHOULD BE:
a tag or a member of a class, structure, union, or
enumeration;
RATIONALE:

This simply lists the kinds of things an identifier can refer to.

6.1.2.1 Scopes of Identifiers

RATIONALE:
Class scope is needed because you want to refer to the members of
a class without having to say ’‘this->member’ all the time. C++

allows this convenience, and it is widely used. It has no run-time
overhead, since it is merely syntactic sugar for the full expression.

Page 20, line 22, IS:

There are four kinds of scopes: function, file, block, and function
prototype.

' SHOULD BE:

There are five kinds of scopes: function, file, class, block, and
function prototype.

RATIONALE:

Class member names can be used in member functions as follows:

class A {
int foo;
void bar();

}i
void A::bar()

foo = 3; /* means this->foo = 3; */

}

A special class scope concept must be introduced so that the binding
of class members is resolved properly.

Page 20, line 28-29, IS:
... appears outside of any block or list of parameters, ...

SHOULD BE:

... appears outside of any block, class declaration, member function
definition or list of parameters, ...

RATIONALE:

This language restricts file scope identifiers to exclude class
declarations. Those identifiers have class scope, not file scope.

Page 20, line 30, BEFORE:
If the declarator or type specifier ...

INSERT:
If the declarator or type specifier that declares the identifier
appears inside a class declaration list, the identifer has class
scope, which terminates at the } that closes the class specifier and
resumes for the duration of each member function definition
associated with the same class encountered later in the same
translation unit.

RATIONALE:

This language specifies exactly what identifiers have class scope.
It is a little complicated by the fact that member functions have to
be prototyped in the class declaration, but defined outside it.

Page 20, line 39, 1IS:
Structure, union, and enumeration tags have scope ...
SHOULD BE:
Class, structure, union, and enumeration tags have scope ...
RATIONALE:
This just describes the scope of class tags as being the same as
other tags. C++ allows tags to be used as if they were typedef names
(more or less). This proposal does not do this. I believe that
using tags as typedef names should be addressed as an independent

proposal. Such a proposal logically includes all tag names, not just
class names.

6.1.2.2 Linkages of Identifiers
RATIONALE:
Member functions have to be prototyped in headers that get included

many times in a program’s different translation units. They also
need no more than one implementation somewhere. All references to

Page 21,

the member function have to bind to the right class and function.
Member functions in different classes have different names.

In practice, class linkage wll be accomplished by some form of name
mangling: combining the class name and the function name into a
single extern name.

If we want to support static objects inside classes (a feature of
C++), they will have to have class linkage as well.

line 8-9, IS:

There are three kinds of linkage: external, internal, and none.

SHOULD BE:

There are four kinds of linkage: external, internal, class and none.

RATIONALE:

Page 21,

In order for member functions in distinct classes to bind to distinct
definitions, there also needs to be a class linkage.

line 13 BEFORE:

Identifiers with no linkage denote unique entities.

INSERT:
In the set of translation units and libraries that constitutes an
entire program, each instance of a particular identifier declared
with class linkage within compatible class types denotes the same
function.

RATIONALE:
Each class has its own set of member functions. Moreover, calls in
one translation unit must bind to definitions in another.

Page 21, line 20-21, IS:
If the declaration of an identifier for a function has no storage-
class specifier, its linkage is determined exactly as if it were
declared with the storage class specifier extern.

SHOULD BE:
If the declaration of an identifier for a function has no storage-
class specifier and the identifier does not have class scope, its
linkage is determined exactly as if it were declared with the storage
class specifier extern.

RATIONALE:
This change just excludes member functions from functions that get
treated as extern.

Page 21, BEFORE line 24 INSERT:

An identifier with class scope declared to be a function has class
linkage.

RATIONALE:

This defines the set of identifiers that have class linkage: member
functions.

6.1.2.3 Name Spaces of Identifiers

RATIONALE:

This section presents something of a problem. The existing name
spaces of C are not overlapping. If we add classes to C, class
members actually participate in two name spaces: structure members
(because they can appear as operands of the . and -> operators), and
also ordinary identifiers (since they can appear as plain references
inside member function definitions).

The language of this section does not seem to forbid this overlap,
however, so I have simply listed class members in both name spaces.
Page 21, line 36-37, IS:

* the tags of structures, unions, and enumerations (disambiguated by
following any of the keywords struct, union or enum).

SHOULD BE:
* the tags of classes, structures, unions, and enumerations
(disambiguated by following any of the keywords class, struct,
union or enum).

RATIONALE:

This simply indicates that class tags are in the tag name space.

Page 21, line 38-40, IS:

* the members of structures or unions; each structure or union has a
separate name space ...

SHOULD BE:

* the members of classes, structures or unions; each class, structure
or union has a separate name space

. Page 22, line 1-2, 1IS:

* all other identifiers, called ordinary identifiers (declared in
ordinary declarators or as enumeration constants).

SHOULD BE:
* all other identifiers, called ordinary identifiers (declared in
ordinary declarators, as members and referenced within a member
function or as enumeration constants).

6.1.2.5 Types

RATIONALE:

Classes are a new form of aggregate type closely related to structures.
This section lays out the general attributes of a class.

Page 22, line 28 IS:

Types are partitioned into object types (types that describe
objects), function types (types that describe functions), and
incomplete types ...

SHOULD BE:

Types are partitioned into object types (types that describe
objects), function types (types that describe functions and member
functions), and incomplete types ..

RATIONALE:

Member functions do not have types that can be converted to normal
function types, but they clearly arenot object types. There is no
special need to create a completely new category of type, but we do
need to indicate clearly where member function types fit.

Page 23, line 28 BEFORE:

* A structure type describes a sequentially allocated nonempty set
of member objects, each of which has an optionally specified name
and possibly distinct type.

INSERT:

* A class type describes a sequentially allocated nonempty set of
member objects and member functions. Each member object has an
optionally specified name, possibly distinct type and visibility.
Each member function has a specified name, possibly distinct type
and visibility.

Page 23, line 37 BEFORE:
* A pointer type may ...
INSERT:

* A member function type describes a function associated with a
class type and with specified return type. A member function
type is characterized by the class in which it is declared, the
return type and the number and types of its parameters. A member
function type is said to be derived from its return type and
enclosing class, and if its return type is T and enclosing class is
C, the member function type is sometimes called "member function
of C returning T." The construction of a member function type from
a class and a return type is called "member function type
derivation."

RATIONALE:

Member functions have a distinct range of types, different from all
function types. This distinction reflects the existence of the
implied "this" parameter. This proposal does not establish pointers
to member functions. Such pointers are not needed terribly often,
so excluding them avoids the complexity of calls to member function
pointers, which would require additional syntax.

Page 24, line 6-7 1IS:
Array and structure types are collectively called aggregate types.

SHOULD BE:

Array, class and structure types are COllectively called aggregate
types.

RATIONALE:
What else can classes be?

Page 24, line 9-10 IS:
A structure or union type of unknown content (as described in
6.5.2.3) is an incomplete type. It is completed, for all .
declarations of that type, by declaring the same structure or union
tag with its defining content later in the same scope.

SHOULD BE:
A class, structure or union type of unknown content (as described in
6.5.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same class, structure or
union tag with its defining content later in the same scope.

RATIONALE:

This defines classes tag to be incomplete and completable in the same
was a structure types.

Page 24, line 13 1IS:

Array, function, and pointer types
SHOULD BE:

Array, function, member function, and pointer types
RATIONALE: -

This section makes a member function type a form of derived
declarator type.

6.1.6 Punctuators

Page 32, line 4 ADD TO THE LIST OF PUNCTUATOR TOKENS:

RATIONALE:
This token is needed for member function definitions. C++ makes other
uses of this token which are not included in this proposal. The

next proposal that include inheritance add some syntax that makes use
of this token as well.

6.3.1 Primary Expressions

Page 39, line 4 ADD TO THE LIST OF primariy—-expression PRODUCTIONS:
this
RATIONALE:

The keyword ‘this’ is used in C++ expressions as if it were a
variable name.

Page 39, line 11 BEFORE:

V)

e

INSERT:

A constant is a primary expression.

The keyword ’this’ is a primary expression, provided it is used
within the block that is the body of a member function definition.
The type of the operand is a constant pointer to the class of the
member function being defined. If the member function type is
qualified, the operand type is a constant pointer to the class
qualified in the same way as the member function.

RATIONALE:

The object named in a member function call is passed as an implied
parameter to the member function. The ‘this’ keyword is used to
refer to the parameter.

The addition of qualified function types and their effect on ’this’
allows the programmer to be able to declare const or volatile
instances of a class object. Class objects so qualified can only be
used to call similarly qualified member functions.

6.3.2 Postfix Operators

Page 39, line 28 AFTER:
postfix—-expression ——
INSERT:
postfix—-expression . identifier (
argument—expression—-list opt)
postfix—expression —> identifier (
argument—-expression-list opt)
RATIONALE:

6.3.2.2

Page 41,

The specification of member-function calls could be written so that
the existing syntax is used without these productions. Technically
the new productions actually introduce an ambiguity in the grammar.
I think it is helpful, however, to emphasize the distinct nature

of a member function call.

This way, a new separate section can be added that describes member
function calls spearately from normal function calls and member
references. Otherwise, a member function call would have to be
identified as a function call whose first operand is a member
reference that names a member function. This complicates those
sections more than I like.

Function calls

line 22-23 1IS:

Recursive member function calls shall be permitted, both directly and
indirectly through any chain of other functions.

SHOULD BE:

Recursive member function calls shall be permitted, both directly and
indirectly through any chain of other functions or member functions.

RATIONALE:

This merely requires that recursion work regardless of the mix of
function calls and member function calls.

Page 41, line 33 BEFORE:
An argument may be ...
INSERT:

If the expression that precedes the parenthesized argument list in

a function call consists solely of an identifier, and that identifier
names-a member function, the whole call expression is treated as

a member function call whose initial tokens were ‘this->" followed
the tokens of the function call expression.

RATIONALE:

This allows a programmer to omit the ’“this->" tokens within a member
function definition. This is a significant convenience in writing
code.

6.3.2.3 Structure and Union Members
CHANGE THE SECTION TITLE TO:

6.3.2.3 Class, Structure and Union Members
RATIONALE:

Classes behave like structures or unions with respect to . and ->
operators. One minor exception is the paragraph beginning on page
42, line 5 that describes the behavior of overlapping objects and
common initial sequences of members in structures. I have added no
language to make any promises about memory layout in different
classes.

Page 41, line 33-37, 1IS:

The first operand of the . operator shall have a qualfiied or
unqualified structure or union type, and the second operand shall
name a member of that type.

The first operand of the -> operator shall have type "pointer to
qualified or unqualified structure" or "pointer to qualified or
unqualified union", and the second operand shall name a member of
the type pointed to.

SHOULD BE:

The first operand of the . operator shall have a qualfiied or
unqualified class, structure or union type, and the second operand
shall name a member of that type.

The first operand of the -> operator shall have type "pointer to
qualified or unqualified class", "pointer to qualified or unqualified
Structure" or "pointer to qualified or unqualified union", and the
second operand shall name a member of the type pointed to.

The named member operand shall have object type and shall be visible.
RATIONALE:

This language describes the constraints on the . and -> operators.
These operators have to be extended to include classes. The final

/-

constraint makes references to member functions or private members
(outside their scope) off limits.

Page 41, line 39-40 IS:

A postfix expression followed by a dot . and an identifier designates
a member of a structure or union object.

SHOULD BE:

A postfix expression followed by a dot . and an identifier designates
a member of a class, structure or union object.

RATIONALE:

This just includes classes where structures and unions are mentioned.

Page 42, line 1-2 IS:

A postfix expression followed by an arrow —> and an identifier
designates a member of a structure or union object.

SHOULD BE:

A postfix expression followed by an arrow —-> and an identifier
designates a member of a class, structure or union object.

RATIONALE:
This'just includes classes where structures and unions are mentioned.
Page 42, line 34 ADD TO FORWARD REFERENCES:

class specifiers (6.5.2.4)

NEW SECTION:

Page 43, before line 11:
6.3.2.5 Member Function Calls
Constraints

The first operand of the . form of the member function call operator
shall be an lvalue and have a qualfiied or unqualified class type,
and the second operand shall name a member of that type.

The first operand of the -> form of the member function call operator
shall have type "pointer to qualified or unqualified

class" and the second operand shall name a member of the type
pointed to.

The named member operand shall have member function type and shall
be visible.

The number of arguments shall agree with the number of parameters.
Each argqument shall have a type such that its value may be assigned
to an object with the unqualified version of the type of its
corresponding parameter.

Semantics
A postfix expression followed by a dot ., an identifier and followed

by parentheses () containing a possibly empty, comma-separated list of
expressions is a member function call. The value of ‘this’ in the

called member function shall be the address of the object designated

by the first operand.

A postfix expression followed by an arrow ->, an identifier and
followed by parentheses () containing a possibly empty, comma-
separated list of expressions is a member function call. The value
of ‘this’ in the called member function shall be the value of the

the first operand.

Arguments in a member function call have the same semantics as
arguments in a function call.

Recursive member function calls shall be permitted, both directly and

indirectly through any chain of other functions or member functions.

If the operand that names the called member function has type
member function returning an object type, the member function call
expression has the same type as the object type, and has the value
determined as specified in 6.6.6.4. Otherwise, the member function

call has type void.

RATIONALE:

This produces the core semantics of a call to a member function in
the absence of inheritance in C++. The efficiency of a member
function call is exactly the same as a call to a corresponding
normal function with one additional paraemter: this.

6.5.2 Type Spécifiers

Page 58, line 34 BEFORE:

struct—-or—union-specifier

INSERT:

class—-specifier

Page 59, line 18 BEFORE:

* struct-or—union specifier

INSERT:

* class specifier

Page 59, line 22 1IS:

Specifiers for structures, unions, and enumerations are discussed in

6.5.2.1 through 61512\

SHOULD BE:

3.

Specifiers for classes, structures, unions, and enumerations are
discussed in 6.5.2.1 through 6.5.2.4.

Page 59, line 27 1S:

Forward references: enumeration specifiers (6.5.2.2), structure and

union specifiers (6.5.

SHOULD BE:

2.1), tags (6.5.2.3), type definitions (6.5.6).

Forward references: enumeration specifiers (6.5.2.2), class

specifiers “(65552 f4),

structure and union specifiers (6.5.2.1),

1Y

tags (6.5.2.3), type definitions (6.5.6).

RATIONALE:
Classes are declared using the same grammatical unit, more or less,
as structures and unions. To avoid renumbering sections, I have
added a new section for class specifiers at the end of section 6.5.2,
even though in other places classes are usually mentioned first.

In the Draft, we may wish to reorder these sections in order to
present class specifiers before structure and union specifiers.

6.5.2.3 Tags

Page 62, 16-23, IS:
A type specifier of the form
struct—or-union identifier { struct-declaration-list }
or
enum identifier { enumerator-list }
declares the identifier to be the tag of the structure, union or
enumeration specified by the list. The list defines the structure
content, union content, or enumeration content. If this declaration
of the tag is visible, a subsequent declaration that uses the tag
and that omits the bracketed list specifies the declared structure,
union or enumerated type.
SHOULD BE:
A type specifier of the form
class identifier { class-declaration-list }
struct-or-union identifier { struct-declaration-list }
or
enum identifier { enumerator-list }
declares the identifier to be the tag of the class, structure, union
or enumeration specified by the list. The list defines the class
content, structure content, union content, or enumeration content.
If this declaration of the tag is visible, a subsequent declaration
that uses the tag and that omits the bracketed list specifies the
declared class, structure, union or enumerated type.
RATIONALE:
This wording simply makes class tags work exactly like structure,

union or enumeration tags. Note that in C++ tags can be used as if
they were typedefs.

class' foo { Toa

class foo X; /* keyword ‘struct’ needed in C */
// in C++

foo X7 // The keyword can be omitted.

Of course, in C++, these declarations could be followed by:

Page 62,

INSERT:

int foo; // Legal, foo is now an int.

class foo Y; // Now the keyword is needed because
// of the variable declaration.

If the committee wants the C++ behavior, then something must be done
in section 6.5.2 to make that clear.

line 25 1IS:
If a type specifier of the form
struct-or—union identifier
occurs prior to the declaration that defines the content, the
structure or union is an incomplete type. It declares a tag that
specifies a type that may be used only when the size of an object
of the specified type is not needed. If the type is to be completed,
another declaration of the tag in the same scope (but not in an
enclosed block, which declares a new type known only within that
block) shall define the content. A declaration of the form
struct-or—union identifier ;
specifies a structure or union type and declares a tag, both visible
only within the scope in which the declaration occurs. It specifies
a new type distinct from any type with the same tag in an enclosing
scope (if any).
A type épecifier of the form
struct-or—union { structure-—-declaration-list }
or
enum { enumerator-list }
specifies a new structure, union, or enumerated type, within the
translation unit, that can only be referred to by the declaration
of which it is a part.
If a type specifier of the form
class identifier
or
struct-or—union identifier
occurs prior to the declaration that defines the content, the
class, structure, or union is an incomplete type. It declares a tag
that specifies a type that may be used only when the size of an
object of the specified type is not needed. If the type is to be
completed, another declaration of the tag in the same scope (but not
in an enclosed block, which declares a new type known only within
that block) shall define the content. A declaration of the form
class identifier ;
or

struct—or—union identifier ;

specifies a class, structure, or union type and declares a tag, both

visible only within the scope in which the declaration occurs. It
specifies a new type distinct from any type with the same tag in an
enclosing scope (if any).

A type specifier of the form
class { class—-declaration-list }

struct—-or-union { structure—declaration-list }

or
enum { enumerator-list }

specifies a new class, structure, union, or enumerated type, within
the translation unit, that can only be referred to by the declaration
of which it is a part.

RATIONALE:
These rules deal with incomplete class declarations and forward

declarations. Again, I have made classes behave exactly as existing
C structures and unions.

NEW SECTION:
Page 64, before line 1:

6.5.2.4 Class'Specifiers

Syntax
class—specifier:
class identifier opt { class—-declaration-list }
class identifier
class—-declaration-list:
class—-declaration
class—declaration—-list class—-declaration
class—declaration:
visibility-specifier opt
class—-specifier—-qualifier-list
struct-declarator-list ;
class-specifier-qualifier-list:
type—-specifier class-specifier—-qualifier-list opt
type—qualifier class-specifier-qualifier-list opt
visibility class-specifier—-qualifier-list opt
visibility-specifier:
visibility
visibility:
public
private
Constraints

A class shall not contain a member with incomplete type. Hence it
shall not contain an instance of itself (but may contain a pointer
to an instance of itself).

The declarator of a member declared with member function type shall
include a prototype.

Semantics

As discussed in 6.1.2.5, a class is a type consisting of a sequence
of named members, whose storage is allocated in an ordered sequence.

The presence of a class—declaration-list in a class-specifier
declares a new type, within a translation unit. The class-—
declaration-list is a sequence of declarations for the members of
the class as well as optional visibility specifiers. If the class-
delcaration-list contains no named members, the behavior is
undefined. The type is incomplete until after the } that terminates
the list.

A member of a class may have any object or member function type. In
addition, a member may be a bit-field.

Each non-bit-field member of a class with object type is aligned in
an implementation defined manner appropriate to its type.

Within a class object, the non-bit-field members and the units in
which bit-fields reside have addresses that increase in the order in
which they are declared. Whether a pointer to a class object,
suitably converted, points to its initial member is unspecified.
Therefore there may be unnamed padding anywhere within a class
object, even at its beginning.

There also may be unnamed padding at the end of a class as necessary
to achieve the appropriate alignment were the class to be an element
of an array.

A member is visible (can be used as an operand of a dot . or arrow
—> operator or in a member function call) within its scope or if it
has public visibility.

A member has public visibility

* if the keyword public appears in the class—specifier-
qualifier-list of the declaration of the member, or

* 1f the keyword private does not appear in the
class-specifier-qualifier-list of its declaration and the
nearest visibility-specifier appearing in the class’
class-declaration-list in or before the member’s
declaration contains the keyword public.

All other members have private visibility.
Example

class point {

int X, Ys

public:

void set (int newx, int newy);
int getx (void);

int gety (void);

}i
class point Cursor;

makes point the tag of a class, and then declares Cursor as an
object that has this type.

N

17

The class contains five members: x, y, Sset, getx, and gety.

The members x and y have private visibility (which means that they
can only be referenced within the member functions set, getx and
gety. The member functions are all public, however, since they
follow a public visibility specifier. Thus, they can be called
from any function where this class declaration is visible, not just
the member functions themselves.

RATIONALE:

The use of public and private members together with member functions
are the mechanism that gives classes one of their great strengths:
the ability to constrain users of a class from unrestricted
manipulation of private data. This provides language support for
an important principle of software design: the separation of
implementation and interface.

One could add member functions to C structures and not include the
visibility specifiers, but that would eliminate one of the important
features of classes. I believe that the improved enforcement of
interfaces that results from these features justifies the four new
keywords needed to implement them.

Private data members mean that member functions, or some related
feature, are also needed. Friend functions in C++ can be used, for
example, to gain access to private data. With neither member
functions nor friends, there is no way to access private data, thus
making them useless features to have.

Friends do not need ‘this’ (since a friend is a normal function).
Friends also do not introduce the problem of pointers to member
functions (which are not defined in this proposal). There is still
a new keyword (’friend’) so including friends but not member
functions doesn’t reduce the number keywords needed.

Friends are not proposed here because they, being normal functions,
share the global name space of C. THe name space pollution problem
is significantly eased, however, by using member functions. Each
member function need only have a unique name within the same class.
Any number of other classes can use the same names for their own
member functions.

In C++ programs, friends are not the preferred method of access to
private data, member functions are. I think that using member
functions would allow for a larger body of code to be portable and
appropriate between C and C++.

Note that the specification of member function types mandates that

prototypes must be used. O0ld-style function declarators are not
allowed in a class declaration.

6.5.4 Declarators
Page 65, line 18 IS:

identifier
SHOULD BE:

identifier
identifier :: identifier

Page 65, line 21 1IS:

direct-declarator (parameter-type-list)

SHOULD BE:

direct-declarator (parameter-type-list)
type-qualifier-list opt

RATIONALE:

Function declarators need to support const and volatile qualfication
so that const and volatile qualified class objects can be properly
manipulated with member functions.

Page 65, line 45 BEFORE:

In the following subsections, ...

INSERT:
A direct-declarator of the form identifier :: identifier declares
the second identifier, and asserts that it is the name of a member
with member function type and that the first identifier is the name
of the class in which the member appears.

RATIONALE:

This describes the syntax needed to define member functions. 1In this
proposal, the :: syntax only needed in member function definitions.
The use of this token to qualify references in expressions is included
in a later sub—-proposal on inheritance.

The syntax is included here because the :: syntax must be embedded in
a potentially complex declarator in the definition itself. Using
this here simplifies the member function definition syntax below.

6.5.4.3 Function Declarators

Page 67, line 28 BEFORE:

Semantics
INSERT:
A function declarator with a non-empty type-qualifier-list shall
appear as the outermost derivation of a member function type.
RATIONALE:

These qualifiers are only meaningful within classes. This sentence
is a constraint, mandating a diagnostic if qualifiers are used
anywhere else on a function declarator.

6.5.7 Initialization
Page 71, line 38 AS MODIFIED BY TC1#17Q17 IS:

Except where explciitly stated otherwise, for the purposes of

this subclause unnamed members of objects of structure and union

type do not participate in initialization. Unnamed members of
structure objects have indeterminate value even after initialization.
A union object containing only unnamed members has indeterminate
value even after initialization.

24

SHOULD BE:

Except where explciitly stated otherwise, for the purposes of

this subclause unnamed members of objects of class, structure, and
union type and class members with private visibility or member
function type do not participate in initialization. Unnamed members
of class or structure objects have indeterminate value even after
initialization. A union object containing only unnamed members has
indeterminate value even after initialization. Class members with
private visibility have the same value as an object with static
storage duration and the same type as the member that was not
explicitly initialized.

Page 72, line 9-11 IS:

The initializer for a structure or union object that has automatic
storage duration either shall be an initializer 1list as described
below, or shall be a single expression that has compatible structure
or union type.

SHOULD BE:

The initializer for a class, structure, or union object that has
automatic storage duration either shall be an initializer list as
described below, or shall be a single expression that has compatible
class, structure, or union type.

RATIONALE:
Classes are initialized like structures, except for the addition
of private members. This proposal specifies that priovate members
are initialized according to the rules for implciitly initialized
statics. Unlike unnamed membersw, which can neven be manipulated
at all, so that their content is irrelevant, private members can be
used from within member functions. That means that a well defined
value is much more useful and for static initializers no more
expensive.

6.7 External Definitions

Page 81, line 8 1IS:
declaration

SHOULD BE:

declaration
member-function—definition

Page 81, line 22-23 IS:

An external definition is an external declaration that is also a
definition of a function or an object.

SHOULD BE:

An external definition is an external declaration that is also a
definition of a function, an object, or a member function.

NEW SECTION:
Page 84, after line 10 ADD:
6.7.3 Member Function Definitions

Syntax

member-function—-definition:
declaration-specifiers opt declarator
compound-statement

Constraints

The identifier declared in a member function definition shall have a
member function type, as specified by the declarator portion of the
function definition.

The return type of a member function shall be void or an object type
other than array.

The declaration—-specifiers of a member function definition shall not
include a storage-class specifier.

The function declarator that specifies the type of the member
function shall include a parameter list. The declaration of each
parameter shall include an identifier (except for the special case
of a parameter list consisting of a single parameter of type void,
in which there shall not be an identifier).

The class name mentioned in the declarator for a member function
shall be visible and shall include a delcaration of a member with
the same name and compatible type as that in the definition.

Semantics

The declarator in a member function definition specifies the name
of the member function, its class and the identifiers and types of
its parameters.

If a member function that accepts a variablenumber of arguments is
defined without a parameter type list that ends with the ellipsis
notation, the behavipor is undefined.

On entry to the member function the value of each argument expression
shall be converted to the type of its corresponding parameter, as if
by assignment to the parameter. Array expressions and function
designators as arguments are converted to pointers before the call.

A declaration of a parameter as "array of type" shall be adjusted

to "pointer to type," and a declaration of a parameter as "function
returning type" shall be adjusted to "pointer to function returning
type," as in 6.2.2.1. The resulting parameter type shall be an
object type.

On entry to the member function the value of ‘this’ is set to the
address of the appropriate class object as specified in 6.3.2.5.

Each parameter has automatic storage duration. Its identifier is
an lvalue. The layout of storage for parameters is unspecified.

The object that ‘this’ refers to has automatic storage duration and
it is an lvalue. The layout of storage for ‘this’ is unspecified.

RATIONALE:

This specification only allows member function definitions with
prototypes. Since member functions are entirely new, there is no
reason to support old-style definitions.

Otherwise, the specification here is the same as for normal functions
(except for the bit about ‘this’).

