Document Number: WGla N¥/9/x3g11 9 022

C9X Revision Proposal

Title: Addition of predefined identifier " FUNC ",
Author: David R. Tribble
Author Affiliation: (Self)
Postal Address: 6004 Cave River Dr.
Plano, TX 75093-6951
USA
E-mail Address: drtewcwcen.wf.com
drtemerlin.etsu.edu
Telephone Number: +1 214 9641720
+1 214 9608649 219 (day)
Fax Number: (None)
Sponsor:
Date: 1995-01-23
Proposal Category:
___ Editorial change/non-normative contribution
.~ Correetidn
X New feature

~ Addition to obsolescent feature list
Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
___ Environment
X_ Language
X Preprocessor
___ Library
___ Macro/typedef/tag name
Function
.. Header
__ Other (please specify)
Prior Art: I think this was implemented by Aztec C some
years ago.
Target Audience: Programmers using debugging statements.

Related Documents (if any): (None)
Proposal Attached: X Yes __ No, but what'’s your interest?
Abstract: The use of the predefined .identifier " _FUNC_ "

allows programmers to specify the name of the enclosing

function in debugging statements.
It may also be used in the "assert ()" macro.

e e s e e e a e Cover Sheet ends here 3 Ay
Proposal:

Notational Notes:

Font changes within source code examples are bracketed by
troff-like notation, e.g., \fFfixed-width\fP,
\fIitalics\fP, and \fBbold\fP; \fF causes a switch to
fixed-width (courier) font, \fI chooses italic font, \fB
chooses bold font, and \fP returns to the previous font.
This is only used when it is confusing to use the
recommended "courier", *italics*, and BOLD notations.

Problem Statement:

b SR

Programmers who use debugging statements often use the
" LINE " and "__FILE " predefined macro names ([6.8.8]).

However, displaying the name of the function that contains
a given debugging statement is not as easy.

Typically, programmers have to add hard-coded strings to
their debugging statements (which are typically calls to
"printfi(1") .

This leads to clutter and wasted data space.

It also leads to confusion if function names are changed or
function code is duplicated, and the programmer, in his
haste, forgets to change the affected debugging statements.

Conceptual Model:
The addition of the predefined identifier "__FUNC__ " would
remedy this situation.

Syntax and Semantics:

The identifier "__FUNC__" is recognized by the translator
as a predefined name with the implicit definition of:
\fF

static const char __ FUNC__ [\fIN\fP+1] =
"\fIfunction_name\fP";

NTP

Its value is a null-terminated string constant containing
the name of the current function (i.e., the function that
contains the statement in which "__ FUNC__ " occurs).

Its size, *N*, is the length of the function’s name.

For example:
\fF
#include <stdio.hs>

int f(int .a, int. 'b)

printf ("$s(%¥d, %$d)\n", _ FUNC_ , a, b);
return a+b;

\fP
Whenever function "f" is called, its name and argument
values are printed to the standard output.

A more typical use of " FUNC _" is for debugging
statements.

It can also be used by the "assert ()" macro (defined in
<assert.h> [7.2.1.1]), allowing the name of the enclosing
function to be printed in addition to the "__FILE " and

" _LINE " macro values.

Rationale:

The use of the predefined " FUNC " identifier allows the

programmer to use debugging statements of a more
informatory nature, specifically, to indicate the
particular function of interest.

This is especially useful for fatal errors and ' ‘should not
occur’’ conditions that produce warnings for the end user.
(Well, not for the end user per se, but for technical
support personnel rendering aid to an end user who
encounters such a warning.)

.\\,

Constraints:

Unlike the "_FILE__ " identifier,-the "- FUNC_ " -name
cannot be interpreted by most compilers during the
preprocessing phases of translation (phases 1 through 4
[5.1.1.2]), but must be dealt with during the syntactical

parsing phase (phase 7 [5.1.1.2]), similar to the "sizeof"
operator.

It would most likely be treated as a predefined variable
name whose scope is limited to (i.e., local to) each
function.

The " _FUNC__ " identifier is defined only within function
definitions (i.e., within the *compound-statement*
comprising the body of a function [6.7.1]), and is

undefined outside of function definitions.

*For upward compatibility with C++, it may make more sense
to allow it to be defined immediately after the function’s
opening " (" of its parameter list, up to the closing "}" of
the function body, so that function parameters with default
values may be assigned this value.*

Implementation Issues:

The simplest way to implement " _FUNC " is for the
compiler to define a constant string containing the name

of the function currently being parsed.

Each instance of "_FUNC__ " within the body of the function
is semantically equivalent to an instance of the string

constant.

This scheme is simple, but another scheme that is not so
wasteful of data space is for the compiler to allocate a
single constant string variable for each function.

This eliminates redundant duplicate data for every
reference to " FONC M.

A further optimization is to generate a data definition for
" FUNC__ " for a given function only if it is actually
referenced within that function.

One snag needs to be resolved, however.
Since " FILE ", " TLINE ", and the other predefined
macro identifiers ([6.8.8]) are defined in the
preprocessing phase of translation, it is possible to test
for them:

\fF

#ifdef _ FILE _
#endif

\fP

It would be advantageous, or it would at least make the
language more orthogonal, to provide the same capability
Lor " L OFumC
That is, define "_FUNC__ " so that the preprocessor treats
it like a predefined macro name for the purposes of "#if"
directives, but such that the preprocessor does not
actually replace it with anything.

It would be as if this directive had been processed (using
the rules of recursive macro definitions [6.8.3.4]) prior
to the inclusion of any program source lines:

\fF

#define __ FUNC FUNC

\fP

Subsetting:
If an implementor chooses not to implement this feature,
the programmer could determine this using code like the

following:
\fF
#ifdef _ FUNC__
printf ("%s; %d\n®, FUONC , LINE J;
#else
printf ("%s: %d\n", "subr", - LINE TG
#endif
\fP

