Imaginary Types Via Typedefs?

N408, X3J11/95-009

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_thomas@taligent.com

Introduction

“Complex C Extensions” (CCE), Chapter 6 of X3J 11’s Technical Report, is a
specification for complex arithmetic extensions to C that include imaginary types.
The benefits of imaginary types are:

1. compatibility with IEEE floating-point arithmetic
2. more efficient storage and algorithms
3. better modeling for complex analysis

Most existing facilities for complex arithmetic follow the traditional Fortran style,
which does not include imaginary types. Cray has a C implementation of this sort,
but generally complex arithmetic support has been based on other languages. At its
December 1994 meeting, X3J11 requested an evaluation of the idea of providing
imaginary types via typedefs to complex types. Could typedefs be used to ease the
burden of CCE conformance for traditional C implementations (namely Cray’s)?
Could typedefs facilitate porting between traditional and CCE implementations? This

note responds to X3J11’s requested.
How it would work

A C implementation without imaginary types would be supplemented with typedefs
defining imaginary types to be complex types, for example:

typedef float_complex float_imaginary;
typedef double_complex double_imaginary;
typedef long_double_complex long_double_imaginary;

To match CCE's notational scheme, the imaginary unit constant I, which has
imaginary type in CCE, would have complex type with real part equal O and
imaginary part equal 1.

What would be achieved

The typedefs would not address CCE's goals of IEEE consistency or
storage/algorithm efficiency, and some use in modeling the mathematics of complex
analysis would be problematic, as noted below. Hence typedefs would not provide a
trivially easy way for traditional implementations to conform to CCE. The benefits of
the typedefs would be primarily for porting between implementations with and
without imaginary types.

April 27, 1995 Page 1



N408, X3J11/95-009

Note first that CCE amounts to an extension of the traditional complex arithmetic
facility, and still supports the traditional style of programming, which declares all
variables to be complex. Hence, traditional style programs which don’t explicitly
name imaginary types largely port without need of the typedefs. (With CCE, because
the imaginary unit 1 implicitly introduces imaginary types, even ports of traditional
programs benefit from the imaginary types.)

With the typedefs, some code explicitly designating imaginary types could survive on
both CCE and traditional implementations. The typedefs would allow
implementations without true imaginary types to host some programs that explicitly
use imaginary types, and programmers on implementations without true imaginary
types could use the typedefs in anticipation of porting to an implementation that had
the real thing.

Many programs, for ordinary cases involving only normal numbers, and within the
limitations below, would produce similar numerical results (subject to the usual
floating-point porting considerations) on the two kinds of implementations.

Limitations

Code that depends on the size of the imaginary types, or on the fact that their
representations match the real types, would not port. An example is the use of
Standard C I/O with imaginaries, which is guaranteed by CCE.

Size and speed savings due to the smaller size of the imaginary types would not
survive a port to an implementation with typedef'd imaginary types.

Only implementations with true imaginary types could guarantee the IEEE
consistency benefits of imaginary types.

Of course the typedef’d imaginary types wouldn’t really be imaginary. The most
basic invariance of imaginary numbers would not be supported: calculated
“imaginary” values well might have a non zero real part. Other assumptions
guaranteed by CCE would fail on implementations without true imaginary types, e.g.
imaginary * imaginary = real and cos(imaginary) = real. Hence use of imaginary
typedefs for modeling purposes might prove problematic because expected
invariances wouldn’t hold.

The limitations described above pertain mostly to porting from CCE implementations
to traditional ones.

Conclusions

For traditional implementations, imaginary types via typedefs to complex types would
not address the goals of CCE, hence do not provide a mechanism for easy
conformance to CCE. With or without the typedefs, most programs should port from
traditional to CCE implementations, and even run better there because of the true
imaginary types and their implicit use. Programs without explicit use of imaginary
types should port from CCE to traditional implementations, with minor limitations.
Some programs with explicit use of imaginary types should port from CCE to
traditional implementations with typedefs, though with substantial limitations. An
implementation without true imaginary types could reasonably provide the typedefs,
or just document how the programmer could write them, but the implementation
should document their limitations.

Page 2 April 27, 1995

¢y
o~



