FPCE Features for C9X

N407, X3J11/95-008

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_thomas@taligent.com

Introduction

This is a high-level proposal for integrating “Floating-Point C Extensions” (FPCE),
Chapter 5 of X3J11’s Technical Report, into C9X. It classifies FPCE features as:

I. For inclusion in C9X, as normative
II. Forinclusion in C9X, but separable for IEEE implementations
II. Not for inclusion in C9X

Its purpose is to gain X3J11 review and approval for the basic direction.
A subsequent proposal will address the specification details to integrate the features.

Most of the features in group I are key to FPCE's main goals of improving
predictability and supporting the IEEE floating-point standards. The few others, for
example new math functions like acosh, round out basic services for numerical
computation.

Features for IEEE support separate into groups I and II. Those that have reasonable
implementations on non-IEEE systems and support code and data portability among
all systems fall into group I. For example, the isfinite macro function reasonably
always returns true on a system without infinities, and the availability of the macro on
all systems allows programs to exploit infinities on systems that provide them, but
still run on systems that don't. It's particularly important that these sorts of FPCE
features be normative because they support facilities that are present on the great
majority of systems.

Other IEEE-support features amount to direct IEEE binding and have no significance
on systems without the pertinent facilities. These fall into group IL One example is
the mapping between C types and IEEE types. Another is the specification for how
the library functions handle special cases on IEEE systems. This sort of specification
has no bearing on code and data portability between IEEE and non-IEEE systems,
where the limits are already set by differences in the underlying systems.

This proposal does not address the question of whether group II features should be
normative, albeit for IEEE implementations only. Specification for group II features
should be in C9X, else accompany it, maybe as an appendix, because they are an
essential complement to group I features in providing IEEE support.

Prior art recommends all FPCE features in groups I and II. Those in group III have
not yet proven practical and useful enough for inclusion, or are superseded by the
following proposals for groups I and II.

April 27, 1995 Page 1

-~

N407, X3J11/95-008

Group I

These FPCE features should be included in C9X as normative, with specification to
follow the Technical Report except where noted.

Floating-point library <fp.h> (§4.3). Enhanced functionality for all implementations.
Key for IEEE support and portability. Supersedes <math.h>.

<fp.h> overloading (§4.3.1). Facilitates portable efficient code. Programming
convenience. Enables better semantics for complex arithmetic, e.g. cos(imaginary) =
real. Requires translator support for many implementations. (Fallback: provide only
double prototypes and rely on implementations to exploit standard library liberties in
dealing with wide arguments and return values.)

Floating-point environment library <fenv.h> (§4.4). Key for IEEE support and
portability. Trivial implementation for non-IEEE systems. Entails introducing
concept of floating-point environment. Consider renaming fegetexcept and
fesetexcept.

Expression evaluation methods (§2.3.1, 3.2.3). Stricter specification of expression
evaluation. Key for predictability for all implementations. Add new macro
FP_EVAL_METHOD t0o <float .h>, which evaluates to

0 float

1 double

2 long double
3 other

0-2 indicate the FPCE methods without widest need. 3 indicates a method deviating
from non-widest-need FPCE methods in some way. One of 0-2 required. (Fallback:
0-2 strongly recommended). Supersedes TR's _MIN_EVAL_FORMAT and
_WIDEST_NEED_EVAL (which existing FPCE implementations could continue to
support).

Hexadecimal floating constants (§3.1.2.1, 4.2.1.2, 4.2.2.1). New floating constants,
with I/O support. Useful for all implementations. Facilitates predictability.

I/0 support for infinities, NaNs, and -0 (§4.2.1.2, 4.2.2.1). Key for IEEE support and
code/data portability.

Translation directives. Recast pragmas as macros, retaining basic effects (per
direction from X3J11). Include fenv_access and fp_contract, but not
fp_wide_xxx directives.

fenv_access macro (§2). Key for IEEE support/optimization. Trivial
implementation for non-IEEE systems.

Jp_contract macro (§3.2.3.2). Key for predictability/efficiency on systems with fast
contracted operators in hardware. Trivial implementation on others.

strtof, strtold, HUGE_VALF, HUGE_VALL (§4.2.1.2, 4.3). Useful for all .
implementations. HUGE_VALF, HUGE_VALL fix deficiency in current standard. \

Page 2 April 27, 1995
2 &Y

N407, X3J11/95-008

Translation-execution consistency (§3.1.2, 4.2.1.2). Key for predictability.

Dynamic FLT_ROUNDS (§$2.3.1). Better fit for IEEE semantics, and for any system
with rounding modes. No implementation required for other systems.

Constant expressions and initialization (§3.4, 3.5). Key for IEEE support. Useful on
any system where constant expressions have side effects. No implementation
required for other systems. (Fallback: move to group IL)

FP environment management (§2.1, 2.2). Key for IEEE support. Useful for any
system with floating-point modes or flags. No implementation required for other
systems. (Fallback: move to group II.)

Optimization guide (§B.2, B.5). Some of the items about expression transformations
and the section on wide representation are important for predictability on all systems.

Documentation guidelines ($E). Recommend information for implementors to
document. Promotes predictability and facilitates porting for all implementations.
Include a brief list of what to document. Don't refer to “forthcoming” guide.

Group II

These FPCE features should be included in C9X, for implementations of IEEE
standard floating-point arithmetic. Specification should follow the Technical Report
except where noted.

<fp.h> for IEEE implementations (§F). For IEEE compatibility.
C-IEEE type mapping (§3.1.1). Key for IEEE support.

C-IEEE conversion mapping (§3.2.1, 3.2.2). Key for IEEE support.
C-IEEE operation mapping (§3.3.1, 3.3.2). Key for IEEE support.

Correctly rounded binary-decimal conversion (§4.2.1.2, 4.2.2.1). Important for
predictability, particularly on IEEE systems where other operations are correctly
rounded. (Move to group 1?)

Optimization guide (§B). Important for IEEE support.

Conformance macro (§3.6). Important for portability of IEEE aware code. IEEE
implementations predefine __FP_IEEE__ indicating support for group I and II
features. Replaces FPCE's __FPCE_IEEE__. __FPCE__not needed.

Other. Any IEEE specification for group I features that is deemed unsuitable for the
general C9X document.

Group III

These features have not yet proven practical and useful enough for inclusion in the
standard, or are superseded by changes mentioned above.

Widest need expression evaluation (§3.2.3.1). Would not be precluded. TR provides
specification for interested implementors.

April 27, 1995 -
p Page 3 ace

N407, X3J11/95-008

Wide parameter, return values, and parameters (§3.2.4). Would not be precluded.
TR provides specification for interested implementors.

Pragmas. Replace with macros. See “Translation directives” above.
Predefined FPCE macro (§3.6). __FrcE__ not needed as FPCE integrates into C.

Expression evaluation macros ($2.3.1). Superseded by FP_EVAL_METHOD . See item
“Expression evaluation methods” above.

Page 4 April 27, 1995

Cv

[N

