Data Parallel C Extensions

Numerical C Extensions Group of X3J11
DPCE Subcommittee

Technical Report, Version 1.6
X3J11/94-080

WG14/N395

December 31, 1994

o~

{

DPCE Technical Report : X3J11/94-080
+ Version 1.6 WG14/N395

Foreword

This technical report is the result of discussions that began within the Array
Syntax subgroup of the Numerical C Extensions Group (NCEG) in May 1989.
The subgroup, to emphasize its primary focus, became known as the Data
Parallel C Extensions (DPCE) subcommittee.

This report addresses only a subset of the issues that were discussed by the
subcommittee. There were many areas of contention in defining these
extensions. The subcommittee chose to consider only those areas where
consensus could be reached. Hence, not every proposed extension or
viewpoint is represented in this report: this should not be construed as
denying their utility or merit.

For example, there.was great interest in including some form of parallel
control flow, but it was agreed that since no consensus could be reached after
considerable debate on this topic, that the subcommittee would leave it for a
future extension. There was also interest in including overloading, to
simplify the extension of library functions to handle data parallel objects, but
its inclusion at this time was rejected, since it was not essential to the overall
goals of the language extensions.

Appendix A describes proposed extensions that were not included, along with
a summary of why those extensions were not accepted.

The scope of this report is intentionally limited to detailing only the most
fundamental concepts of a consistent data parallel model. The extensions
described in this report have been designed to allow further extensions to be
cleanly added in the future. The subcommittee believes that further
experience with the data parallel paradigm will eventually allow consensus to
be obtained for a more broadly defined C extension.

The subcommittee began by adopting a general model that included the basic
concept of parallel data aggregates that have structure (rank and
dimensions), memory layout (possibly noncontiguous), and context (active or
participating elements). The subcommittee then began deliberations on how
parallel aggregates should be accessed and used in expressions and
statements.

As these concepts were already embodied in the C* language developed at
Thinking Machines Corporation, the subcommittee adopted the C* reference
manual [4] as its base document. It proceeded with removing features of the
C* language that were not considered essential to the model, arid adding
more extensions, notably in the area of elemental and nodal functions,
pointers to parallel, and parallel pointers.

The process has been a lengthy one, and the culmination of the
subcommittee's work is described here in a thorough examination of the
needed extensions to each section of the C standard. This exercise itself has

J

I
C

DPCE Technical Report X3J11/94-080
Version 1.6 , WG14/N395

identified and addressed inconsistencies in the model, and has improved and
focused the report.

The DPCE subcommittee wishes to thank the following persons for their
valuable contributions to its deliberation process:

Analog Devices, Marc Hoffman

Analog Devices, Kevin Leary

Analog Devices, Alex Zatsman

Control Data Corporation, Azar Hashemi

Convex Corporation, Austin Curley

Convex Corporation, Bill Torkelson

Cray Research, Incorporated, Tom MacDonald
Cray Research, Incorporated, Dave Becker

David Sarnoff Research Center, Maya Gokhale
Digital Equipment Corporation, Randy Meyers
Digital Equipment Corporation, Jeffrey Zeeb
Farance Inc, Frank Farance

Hewlett Packard, John Kwan

HyperParallel Technologies, Christian Fortunel
HyperParallel Technologies, Nicolas Paris

IBM, Pawel Molenda

IBM, Bill O'Farrell

Keaton Consulting, David Keaton

Lawrence Livermore National Laboratory, Linda Stanberry
MasPar, David Alpern :

Mimosa Systems, Incorporated, Hugh Redelmeier
Open Software Foundation, Mike Meissner
Pacific-Sierra Research, David McNamara

Plum Hall, Tom Plum

SunPro, Bob Jervis

SunPro, Marino Segnan

Supercomputing Research Center, Howard Gordon
Supercomputing Research Center, Aaron Nalman
Syracuse University, Pankaj Kumar

Syracuse University, Nancy McCracken
Thinking Machines Corporation, James L. Frankel
Thinking Machines Corporation, Gary Sabot
Thinking Machines Corporation, Guy Steele
Tydeman Consulting, Fred Tydeman

University of Arizona, Peter Bigot

University of New Hampshire, Phil Hatcher

Unix System Laboratories, David Prosser

US Army, Doug Gwyn

ii

(} :‘——. .

10 ,

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Data Parallel C Extensions

Linda Stanberry, Technical Editor
Lawrence Livermore National Laboratory
PO Box 808, L-300
Livermore, CA 94551
Istanberry@Iinl.gov

1. INTRODUCTION (iSO §1, ANSI §1]

1.1 PURPOSE [ISO §1, ANSI §1.1]

This document describes a set of extensions to Standard C that supports programming of
data parallel applications. The intent is to provide a set of machine-independent extensions
that permit an efficient mapping to high-performance archictectures, especially massively
parallel architectures.

1.2 SCOPE [ISO §1, ANSI §1.2]
This document describes only the data parallel extensions to the C Standard. It presents
those extensions in the context of the relevant sections of the Standard to be modified, and

introduces new subsections of the Standard where appropriate. It does not provide a tutorial
on data parallel programming, nor on Standard C.

1.3 REFERENCES [ISO §2, Annex A, ANSI §1.3]

1. American National Standard for Information Systems-Programming Language @
(X3.159-1989). Note: this is now withdrawn and replaced by [2].

2. International Standard Programming Languages-C (ISO/IEC 9899:1990(E)).

3. “C* Programming Guide,” Thinking Machines Corporation (X3J11.1/90-032).

4. “A Reference Description of the C* Language,” James L. Frankel (X3J 11.1/91-023).
5. “ASX Evaluation Method - Revision 2,” Frank Fa@ce (X3J11.1/92-004).

6. “Massively Parallel C: Architectures and Data Distribution,” Tom MacDonald
- (X3J11.1/92-007).

7. “C* Language Model,” James L. Frankel (X3J11.1/92-010).

8. “C* answers to evaluation criteria,” James L. Frankel (X3J11.1/92-011).

9. “Expressing Communication Costs in an Array Syntax,” Dave Becker (X3J11. 1/92-025).
10. “Focusing the ASX Base Document,” Bob Jervis (X3J11.1/92-026).

11. “Issues concerning the use of C* as a base document,” Frank Farance (X3J11.1/92-028).

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 : WG14/N395

13.
14.
15.

16.
17.
18.

19.
20.

21

24.

25.

26.
217.
28.
29,

30.
31.

32.

“Elemental Execution,” Phil Hatcher (X3J11.1/92-041).
“Left Indexing versus Right Indexing,” Frank Farance (X3J11.1/92-044).
“ASX Ten Commandments,” Frank Farance (X3J11.1/92-045).

“A Critique of the Programming Language C*,” Walter F. Tichy, Michael Phillipsen, and
Phil Hatcher (X3J11.1/92-050).

“Commentary on 'A Critique of the Programming Language C*,” Phil Hatcher
(X3J11.1/92-051).

“A Detailed Response to the C* Critique by Tichy, Phillipsen, and Hatcher,” James
Frankel (X3J11.1/92-053).

“The Pros and Cons of Current Shape in C*,” James L. Frankel (X3J11.1/92-054).
“A Prbposed Worklist of Extensions/Changes to C*,” James L. Frankel (X3J11.1/92-055).

“Parallel Processing Model for High Level Programming Languages (3/92),” Cherri
Pancake (X3J11.1/92-056).

“MasPar's C Directions and Reasons,” David Alpern (X3J 11.1/92-062).
“Parallel Control Flow Constructs,” David Alpern (X3J11.1/92-073).
“Elemental Functions,” Phil Hatcher (X3J11.1/92-076).

“H&perC, A C language for Data Parallelism,” HyperParallel Technologies (X3J11.1/92-
081).

“FORALL Proposal for Base Document,” Gary Sabot (X3J11.1/93-008).
“A Parallel Extension to ANSI C,” Rob E. H. Kurver (X3J11.1/93-009).
“Nodal Functions: A Strawman,” Phil Hatcher (X3J11.1/93-011).
“Parallel Pointer Handles,” James L. Frankel (X3J11.1/93-013).

“Using Iterators to Express Parallel Operations in C (revision 4),” Dave Becker, Kent
Zoya, Bill Homer (X3J11.1/93-050).

“dbC Reference Manual,” J.D. Schlesinger and M. Gokhale (Technical Report SRC-TR-
93-109, November, 1993).

“Adding Shapes to Iterators,” Bill Homer (X3J11/94-021).

“DPCE Array Slicing Proposal,” Frank Farance (X3J11/94-025).

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

1.4 ORGANIZATION OF THE DOCUMENT [ANSI§1.4]

This document is organized into sections that correspond to the relevant sections to be
modified within the Standard C document. Included with each extension is a brief rationale
or example for the extension.

If rationale 'for an extension is included, it is distinguished by indentation and a change of
font such as this.

The major sections of the document are:
1. Introduction

2. Environment

3. Language

4. Library

Each subsection of these major sections follows the structure of ANSI C [1] and ISO C [2],
and indicates which subsections are modified. Cross references are noted at the beginning of
each subsection, enclosed in square brackets—e.g., [ISO §7.1, ANSI §4.1]. The numbering of
all subsections directly corresponds to the numbering within the cited ANSV/ISO standard.
Subsections for which there is no corresponding ANSI or ISO subsection are new [NEW].
Subsections of the standard which are not affected are skipped, so the numbering of
subsections within this proposal will not necessarily be consecutive.

In each subsection of this document, the text is to be considered as amplifying the existing
text of that subsection of the Standard, not replacing or modifying it. Where parts of specific
definitions in existing subsections of the standard are modified, the modification is
introduced by an italicized and underlined heading to that effect, such as:

Revise:

These headings are used for clarity as needed, and omitted where it is obvious that the entire
change is reflected in the text. For brevity, an ellipsis (...) is used to indicate that omitted
text is the same as in the Standard.

Change bars (1) are affixed in the right margin on each paragraph that has changed since
the previous version of this document. :

1.5 BASE DOCUMENTS [ISO §2, ANSI §1.5]1

This set of extensions represents the composition of multiple proposals from participating
representatives, as reflected in the list of references in §1.3. Early in the deliberations, the
committee elected to adopt the C* language reference manual [4] as its base document, and
with this as its foundation, derived the current set of extensions by deleting some features of
C* and adding new features.

0c9

10

15

20

25

30

35

40

45

50

DPCE Technical Report 'X3J11/94-080
Version 1.6 ‘ WG14/N395

1.6 DEFINITION OF TERMS [ISO §3, ANSI §1.6]

The following new terms are used throughout this document. Although it would be more
natural to define each term in the subsection where it is first introduced, it is also convenient
to have the new terms dealing specifically with the data parallel extensions collected in one
place. Hence, the most widely used new terms are defined here.

active position — a position whose values participate in elemental execution.

context — the component of a shape that designates the active positions of a parallel
operand.

dimension — the number of positions along an axis of a shape.

element — the value or object at a position within a parallel operand, respectively; or a
member of an array.

elemental execution — execution of a function or operation on elements within
corresponding active positions of parallel operands.

An operation performed under a context is executed elementally. That is, it is executed on
each value or object at the positions designated as active for a given context.

layout — information specifying a distribution of a parallel object or parallel value onto
memory.

Memory refers to the total composite memory of a computing system.
node — an actual processing unit in the execution environment.

A node usually refers to a hardware processing unit, but is implementation dependent to
allow for diverse parallel environments.

parallel indexing — selecting elements of a parallel operand; single elements or multiple
elements may be selected. :

parallel object — a structured collection of one or more identically-sized objects where the
structure is defined by a shape.

A parallel object is distinct from an ordinary C object in that although it is composed of C
objects, the collection itself is not guaranteed to be contiguously allocated.

parallel operand — parallel value or parallel object.
parallel pointer — a parallel operand whose element type isApointer type.

parallel value - a structured collection of one or more identically-typed values where the
structure is defined by a shape. ; Y

physical - a predefined variable of type shape which is of rank 1 and dimension equal to
the number of nodes in the execution environment.

pointer to parallel - a pointer type whose referenced type is a parallel type.

07

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

¢ position — a point within the index space defined by the Cartesian product of the
dimensions of a shape.

A position of a given shape denotes a point in all variables of that shape.
¢ rank — the number of dimensions or axes in a shape.

¢ reduction — an operation that when applied to a parallel operand produces a single,
nonparallel value, such as the sum of all the elements of a parallel object.

e shape — a type whose values consist of the following components: rank, dimensions,
layout, and context.

Objects and values of type shape are descriptors or templates for parallel objects or parallel
values. Variables may be declared to denote objects of type shape. See §3.1.2.5 and
§3.5.4.4. }

1.7 COMPLIANCE [ISO §4, ANSI §1.7]

In order to comply with this set of extensions, an implementation shall provide for all the
extensions detailed in this document.

1.8 FUTURE DIRECTIONS [ANSI §1.8]

The set of extensions here is intended as the minimal set of extensions needed to support
data parallel programming. As this is a relatively new area of expertise, the DPCE
subcommittee chose not to propose extensions in those directions where more experience is
needed to evaluate alternate proposals. As such experience is gained, further data parallel
extensions will be desirable to codify developing practice and promote portability of data
parallel applications.

071

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

2. ENVIRONMENT (SO §5, ANSI §2]

2.1 CONCEPTUAL MODELS [ISO §5.1, ANSI §2.1]

These extensions are based on a data parallel model of programming. This model provides a
single thread of control while allowing the manipulation of parallel objects. Parallel objects
are manipulated by applying in parallel an operation across all the elements of the objects.
In addition to the single thread model, DPCE also offers two mechanisms which allow the
programmer to directly utilize a multithreaded model: nodal function and elemental
function invocations.

The data parallel model supports a large class of parallel computations while being easy to
learn and use. The ease of use is derived from its emphasis on a single thread of control,
as used in serial programming. That is, this model is easier for users with respect to
program design, debugging, and maintenance. The wide applicability is due in part to the
demonstrated ability of compilers to translate data parallel programs for efficient execution
on a variety of both serial and parallel hardware platforms.

Although the programmer's model presents the illusion of a single thread of control to
simplify the program design, implementation, debugging, and maintenance tasks, the
execution model may utilize many independent, unsynchronized threads or processes.

Examples

The following illustrates a comparison of programming style that one would use to perform
the same operations on a parallel object using DPCE as one would use in ISO C with arrays.
The ISO C example is not truly equivalent to the DPCE example since the DPCE operations
are not ordered as the operations are ordered in the ISO C loops. Further, in DPCE,
operations are performed under context and the granularity is at the operation level rather
than at the statement level. Although the two code segments are not equivalent for the
reasons noted, both demonstrate the same effect.

/* DPCE */ /* ISO C */
shape [100]S; typedef int ShapedInt[100]:;
int:8 x, vy, =z: ShapedInt x, y, z;
int i;
x =y + z; i for (i=0; i<100; i++)
x[i] = y[i] + z[i]);
x += 17; for (i=0; i<100; i++) -
x[1i] += 17;

2.1.2 Execution environments [ISO §5.1.2, ANSI §2.1.2]

At program startup, the DPCE execution environment is established by the inclusion of the
header file <dpce.h>. This environment shall define physical to denote a predefined
variable of type shape which is of rank 1 and dimension equal to the number of nodes in the
execution environment. The layout of physical is implementation-defined.

N

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3. LANGUAGE (150 §6, ANSI §3]

3.1 LEXICAL ELEMENTS [ISO §6.1, ANSI §3.1]

3.1.1 Keywords [ISO §6.1.1, ANSI §3.1.1]

The following keywords are added to the language only if the <dpce.h> header file is
included. In addition to these keywords, <dpce.h> defines the physical shape identifier,
and the functions described in §4.14 of this document.

Add the following new keywords:

block
elemental
everywhere
nodal
scale
shape
shapeof
where

3.1.2.5 Types [ISO §6.1.2.5, ANSI §3.1.2.5]
Reize obj T l includ) ntiiare:

... Types are partitioned into object types (types that describe objects or parallel objects),
function types (types that describe functions), and incomplete types (types that describe
objects or parallel objects but lack information needed to determine their sizes).

Add shape type:
There is one shape type, designated as shape.

The shape type is an object type whose values consist of the following components: rank,
dimensions, layout, and context. A value of type shape is referred to as “a shape.”

A shape type whose rank and dimensions are not known is fully unspecified. A shape type
whose rank is known, but whose dimensions are not, is partially specified. A shape type
whose rank and dimensions are known is fully specified. These three categories of shape
types form three distinct subsets of the shape type. Note: in a declaration of a shape, either
none or all of the dimensions must be specified (see §3.5.4.4).

A void shape designator can be used to specify a generic shape type. See §3.5 and §3.3.2.2.

Examples
shape S; /* Fully unspecified shape */
shape []1T; /* Partially specified shape */
shape [100]U; /* Fully specified shape */
shape [2][]V; /* Constraint violation */

int:void f(int:void arg); /* Function that takes a parallel
int and returns a parallel int
of generic shape */

7

673

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Revise derived o dud i

Any number of derived types can be constructed from the object, function, and incomplete
types, as follows: '

o A parallel type describes a nonempty, structured collection of objects or values with a
particular member type, called the element type. The structure of the collection is defined
by an associated shape. Parallel types are characterized by their element type and their
shape. A parallel type is said to be derived from its element type and its shape. If its
element type is T and its shape is S, the parallel type is called “a parallel T ” or “a parallel
T of shape S.” The construction of a parallel type from an element type and a shape is
called “parallel type derivation.”

For example, a parallel type with element type int and shape S is called “a parallel int” or
“a parallel int of shape S.” A parallel type with element type stxuct is called “a parallel
struct.” A parallel type with pointer element type is called “a parallel pointer.”

These methods of constructing derived types can be applied recursively, except:
* the element type of a parallel type shall not be or contain a parallel type or shape type;

e a structure or union type shall not contain a member that has parallel type or a member
that is a shape; :

Hence, you can have arrays of parallel types, functions returning parallel types or having
parallel-typed arguments, pointers to parallel types, parallel types whose elements are
structs or unions or functions or pointers. But you can't have parallel types whose elements
are parallel types or contain parallel types, or are shape types or contain shape types. Nor
can you have parallel types whose elements are array types (see §3.5).

Note that the element type of a parallel type may be or contain a pointer to parallel type, as
a pointer to parallel is not a parallel type. Hence, a parallel pointer may have element type
“pointer to parallel.”

Peuibitiegil inditpns T ——)

Parallel types whose element types are integral types are called parallel integral types.
Parallel types whose element types are floating types are called parallel floating types.

R ine it il i include parallel .

Parallel integral and floating types are collectively called parallel arithmetic types. Array,

-structure, and parallel types are collectively called aggregate types.

r storgge requir

A pointer t_’.o a parallel type need not have the same representation as a pointer to the
corresponding nonparallel type. The equivalent for parallel types of a pointer to void is a
pointer to void:void.

10

15

20

25

30

35

40

45

50

DPCE Technical Report
Version 1.6

X3J11/94-080
WG14/N395

3.1.2.6 Compatible and composite types [ISO §6.1.2.6, ANSI §3.1.2.6]

Add for compatible shape types:

Two shape types are compatible under the following conditions:

e A fully unspecified shape type is compatible with any other shape type.

e Two partially specified shapes are compatible only if they specify the same rank.

e A partially specified shape type is compatible with a fully specified shape type if the
partially specified shape type has the same rank as the fully specified shape type.

e Two fully specified shape types are compatible only if they specify the same rank,

dimensions, and layout (see §3.2.3).

¢ A void shape type is compatible with any other shape type.

Examples

/* Compatible and incompatible shape types */

shape [(10]S;
shape [10]T:;
shape []U;
shape [][]V;
shape [2] [S]W;
shape []1[]1[1X;
shape Y:

Add for compatible parallel types:

/*
/*
/*
/*
/*
/*

Compatible with S */

Compatible with § and T
Incompatible with S, T,
Incompatible with S, T,
Incompatible with S, T,

*/

and U */

and U */

U, V, and W */

Compatible with S, T, U, V, W, and X *x/

Two parallel types are compatible if they are derived from compatible element types and

compatible shape types.

SR B , e

A composite type can be constructed from two types that are compatible; it is a type that is
compatible with both of the two types and satisfies the following conditions:

o If one type is a qualified function type and the other is an unqualified function type, the
composite type is the qualified function type.

To form a composite function type from an elemental-qualified or nodal-qualified
function type and an unqualified function type, the unqualified versions of the function types
must be compatible, and the composite type will be the qualified function type. This allows
the inclusion of <dpce.h> to coexist with the unqualified declarations of the standard C
library functions that it redeclares as elemental.

675

10

15

20

25

30

35

40

45

50

DPCE Technical Report
Version 1.6

Examples

void *memset ()

#include <string.h>
#include <dpce.h> /*
#include <math.h>

{

}

shape [100]([100]S;

double x;

double:S y:

.. Sin(x) ... /*
FeiRsin(y)ie Kil /%

memset (&x,0,s8izeof (x));

/*

X3J11/94-080
WG14/N395

Provides elemental definitions */

Invokes nonparallel version of sin */
Invokes sin elementally for each

element of y */

Invokes nonparallel version of
memset */

memset ((double:S *:S)&y,0,sizeof(y)):

/*

Invokes memset elementally for each
element of y */

o If one type is a fully unspecified shape and the other is a fully specified shape, the
composite type is identical to the fully specified shape type.

.o If one type is a fully unspecified shape and the other is a partially specified shape, the
composite type is identical to the partially specified shape type.

e If one type is a partially specified shape and the other is a fully specified shape, the
composite type is identical to the fully specified shape type.

e If one type is a void shape and the other is a nonvoid shape, the composxte type is the
nonvoid shape type.

To form a composite shape type, the shapes have to be compatible, and the composite will
always be the more completely specified shape type.

Examples

shape [10]S;

shape T; /*

shape []U; />
/%

void f(int:void x) { ... }

inti Sy,

f(y): /*

Composite type of S and T is S */
Composite type of S and U is S */
Composite type of T and U is U */

Composite type of void and S is S */

10

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.1.5 Operators [ISO §6.1.5, ANSI §3.1.5]
Add new operators:
<? <?= >? >?= $%

3.2 CONVERSIONS [ISO §6.2, ANSI §3.2]
3.2.1 Arithmetic Operands [ISO §6.2.1, ANSI §3.2.1]
3.2.1.1 Characters and integers [ISO §6.2.1.1, ANSI §3.2.1.1]
\dd to the i l A e
A parallel char, a parallel short int, or a parallel int bit field, or their signed or unsigned
varieties, or a parallel enumeration type, may be used in an expression wherever a parallel
int or parallel unsigned int may be used. If a parallel int can represent all values of the
original type, the value is converted to a parallel int; otherwise, it is converted to a parallel
unsigned int; the promoted parallel value will be of the same shape as the original
expression.

Integral promotions are applied elementally to parallel operands.
3.2.1.5 Usual arithmetic conversions [ISO §6.2.1.5, ANSI §3.2.1.5]

r I I
In general, arithmetic conversions performed on a parallel operand result in a parallel value
of the same shape as the operand and whose value at each position is the result of

performing the usual arithmetic conversions on the value at the corresponding position of the
operand.

The usual arithmetic conversions are applied elementally to parallel operands, and the
result is an homogenous parallel operand.

11

5

10

15

20

25

30

35

40

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.2.2 Other Operands [ISO §6.2.2, ANSI §3.2.2]

8.2.2.1 Lvalues and Function Designators [ISO §6.2.2.1, ANSI §3.2.2.1]
Add for parallel lvalues: :

A parallel lvalue is an lvalue that designates a parallel object.

32.2.3 Pointers [ISO §6.2.2.3, ANSI §3.2.2.3]

Revise:

A pointer to void may be converted to or from a pointer to any incomplete nonparallel type
or nonparallel object type. A pointer to any incomplete nonparallel type or nonparallel object
type may be converted to a pointer to void and back again; the result shall compare equal to
the original pointer.

Add:

A pointer to void:void may be converted to or from a pointer to any incomplete parallel
type or parallel object type. A pointer to any: incomplete parallel type or parallel object type
may be converted to a pointer to void:void and back again; the result shall compare equal
to the original pointer.

A pointer to an array of, or containing, any incomplete parallel type or parallel object type
may be converted to a pointer to void:void and back again; the result shall compare equal
to the original pointer. ‘

Since a pointer to an array is also a pointer to the first element of the array, a pointer to an
array of parallel is also a pointer to parallel.

A null pointer constant cast to type void:void * is called a null pointer-to-parallel
constant. If a null pointer constant or a null pointer-to-parallel constant is assigned to or
compared for equality to a pointer to parallel, the constant is converted to a pointer to
parallel of that type. Such a pointer, called a null pointer to parallel is guaranteed to
compare unequal to a pointer to any parallel object.

Two null pointers to parallel, converted through possibly different sequences of casts to
pointers to pgrallel types, shall compare equal.

12

673

10

15

20

25

30

35

40

45

50

55

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.2.3 Parallel Operands and Contextualization [NEW]

In general, in binary operations involving operands of parallel types, there are both compile-
time and run-time requirements. At compile time, the shape types of the operands shall be
compatible (see §3.1.2.6). At run time, the shapes of the operands shall be fully assigned (see
§3.5.4.4) and their values shall be the same; otherwise the behavior is undefined. That is, for
parallel operands a and b,

if (*shapeof (a) == *shapeof (b))

/* a op b is defined */
else

/* a op b is undefined */

Two shapes are the same only if their values are identical; that is, only if they have the same
rank, dimensions, layout and context. The following function returns 1 if the two shapes s1
and S2 are the same, and O otherwise.

int same_shape (shape S1, shape S2)
{

int rank;

intdd i

int:S1 contextl;

int:S2 context2;

int same_context;

rank = rankof (Sl):
if (rank !'= rankof(S2)) return(0):

for (i=0; i<rank; i++) {

if (dimof(S1l,i) != dimof(S2,i)) return(0);

if (layoutof(S1l,i) != layoutof(S2,i)) return(0);
}

everywhere (S1)

contextl = 0;
contextl = 1;
everywhere (S2)

context2 = 0;
context2 = 1;
everywhere (S1)

everywhere (S2)

same_context = &= (contextl == context2):

return (same_context) ;

}

Since shapes may be dynamically specified and/or modified, it may not be possible to
determine at compile time if two shapes will be the same at run time; the compiler must
check, however, that the types of the two shapes are compatible. No requirement is placed
on the generated code to perform run-time tests that shapes are equivalent; the user must
guarantee the equivalence of shapes at run time to avoid undefined behavior. See §A.10
for compiler options for shape equivalence testing.

The shape type of the result of an operation is the composite shape type of the operands. The
shape of the result of an operation is the shape of the operands.

13

10

15

20

DPCE Technical Report X3J11/94-080
Version 1.6 . WG14/N395

If one operand is parallel and one is nonparallel, the nonparallel operand is promoted to a
parallel value of the other operand's shape by replicating the nonparallel operand's value.

If the operator is an assignment operator, this replication applies only when the left operand
or destination is parallel and the right operand or source is nonparallel.

Other exceptions to these rules are noted for each operator in the sections that follow.

The context component of a shape is a specification of which positions of a parallel operand of
the shape are active for a given operation. The context component of a shape is conceptually
a parallel integral value of the shape, where a position is indicated as active by a nonzero in
the corresponding context element, and as inactive by a zero in the corresponding context
element. The elements of the context of a given shape are initially all nonzero, indicating
that all positions are active.

The context of the shape associated with a parallel operation determines which positions of
the operands participate in the operation. Active positions participate in the operation, and
inactive ones do not.

The context of a given shape is altered by context-modifying statements and expressions

which assign elements of the context. The where and everywhere statements modify the.

context component of a shape (see §3.6.7). Expressions involving the &&, | [, and :?
operators also modify the context component of a shape.

14

(G50

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3 EXPRESSIONS [ISO §6.3, ANSI §3.3]

An expression that contains an operand that is a sliced expression (see §3.3.3.6) shall contain
only operands that are sliced expressions or are of nonparallel type.

3.3.1 Primary Expressions [ISO §6.3.1, ANSI §3.3.1]
Revi diasia
Syntax

primary-expression:
identifier

c.onstant
string-literal
(expression)
Constraints
A ‘.’ shall only be used in a parallel-index-expression (see §3.3.3.6).
Semantics
Add:
The type of the expression ‘.’ is the parallel int equivalent to pcoord (s, a), where a is the

axis specifier (0—(n-1)) of the parallel-index-expression in which it is used, and s is the shape
of the nearest enclosing parallel expression being indexed (see §3.3.3.6).

15

'U«,'i

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

8.3.2 Postfix Operators [ISO §6.3.2, ANSI §3.3.2]
3.3.2.1 Array subscripting [ISO §6.3.2.1, ANSI §3.3.2.1]
Constraints

One of the following sh.all hold:

* One of the expressions shall have type “pointer to object type,” the other expression shall
have integral type, and the result has type “type.”

* One of the expressions shall have type “pointer to object type,” the other expression shall
have parallel integral type of shape S, and the result has type "parallel operand of type
type and shape S." '

Semantics

A postfix expression E1 followed by an expression E2 in square brackets [] is either a
subscripted designation of an element of an array object, or a parallel subscripted
designation of elements of an array object.

If E1 or E2 is an integral expression, then the definition of the subscript operator [] is that
E1[E2] is identical to (*(E1 + (E2))). ...

Integral subscripts with pointers to parallel objects behave as do subscripts with pointers to
nonparallel objects.

If E1 or E2 is a parallel integral expression, then E1[E2] is also identical to (*(E1 +
(E2))). Inthis case (E1 + (E2)) denotes adding a parallel int to a pointer, and results in
a parallel pointer. If the pointer expression is a pointer to nonparallel, the result is a parallel
pointer to nonparallel, and if the pointer expression is a pointer to parallel, the result is a
parallel pointer to parallel. The value at each position of the resulting parallel pointer is the
sum of the pointer and the integral value at the corresponding position of the parallel
integral expression, as described in §3.3.6. The behavior of dereferencing the resulting
parallel pointer has position-oriented semantics as described in §3.3.3.2.

16

10

15

20

25

DPCE Technical Report
Version 1.6

Examples

shape [20]S;
shape sarray([5];
int:S x;

int:S :y{50];
int:S *z;

int ‘i; -

int iarray(100];

sarrayl[il];

z = &y[39];

Ve

z[i];

yix]:

iarray[x];

/*
/*
/*
/*

/*

/*
/*

/*

/*

/*

X3J11/94-080
WG14/N395

Array of shapes */
Parallel int */

Array of parallel int */
Pointer to parallel int */
Array of int */

Designates the i-th member of sarray, which
is a shape */

z designates a subarray of y */

Designates the i-th member of y, which is a
parallel int of shape S */

Designates the i-th member of z, which is the
(39+i)-th member of y */

Denotes an int:S, the elements of y
designated by the parallel int x */

Denotes the elements of iarray designated by
the parallel int x */

17

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

83.22 Function calls [ISO §6.3.2.2, ANSI §3.3.2.2]
Constraints
Add for elemental and nodal functions:

A value of type T1 is elementally assignable to an object of type T2if T2 is a nonparallel type
and one of the following is true:

e a value of the type T may be assigned to an object of the unqualified version of the type
T2; or

e T1is a parallel type and a value of the element type of T1 may be assigned to an object of
the unqualified version of the type T2; or :

e TI and T2 are pointer types such that T is either pointer to T1' or parallel pointer to TI’,
T2 is pointer to T2, and a value of type T1’ is elementally assignable to an object of type
T2'; or

e T1 and T2 are array types with the same array size specifications and a value of the
element type of T'1 is elementally assignable to an object of the element type of T2; or

e T and T2 are compatible elemental or nodal function types.
Add for elemental functions:

Each parallel argument to an elemental function shall be elementally assignable to an object
of the type of its corresponding parameter.

Add for nodal functions:

Each parallel argument to a nodal function shall have a corresponding parameter such that
one of the following holds (see §3.5.4.3):

e the parameter type is a parallel type of shape void, such that an element value of the
argument is elementally assignable to an object of the type of an element of the
parameter; or

e the parameter type is a pointer to nonparallel type, such that an element value of the
argument is elementally assignable to an object of the type pointed to by the parameter; or

e the parameter type is a nonparallel type, such that an element value of the argument is
elementally assignable to an object of the type of the parameter.

Each nonparallel argument to a nodal function shall have a type such that it can be

promoted to the corresponding parallel type of physical shape.

An argument to a nodal function shall not be a pointer to a nonparallel type

18

0d

N

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Both shapes and parallel operands may be passed to and returned from functions. Shape
and parallel operand arguments are passed by value; creating the local copy of these
arguments to a function can be inefficient. The usual rules for function calls with and
without prototypes applies.

Parallel arguments and return values are evaluated under the context of the expression in
which the function call occurs. Parallel operands passed as arguments behave as if assigned
to the local copy, following the semantics of assignment under context (see §3.3.16). Only
active positions are assigned, and the shape of the argument must be the same as the shape
of the parameter. A parameter or return value declared as having void shape assumes the
shape of the corresponding argument or return expression, respectively.

To allow access to all positions of a parallel object, use an everywhere statement around
the call, or pass a pointer to the object and use an everywhere statement around accesses
to the object within the function body.

Examples

shape [100]S;
int:S a, b;

int count_active_positionsof (int:void x)
{

return (+= (int: (*shapeof(x))) 1):
}

void print_sum(int:S x)
{

printf ("Sum of parallel argument is %d\n", +=x);
}

int:S add_one(int:S x) {
return(x + 1);
}

/* Examples of use */
print_sum(a);

b = add_one(a):;

where (a > 0) {
printf ("Number of positive elements in a is %d\n",
count_active_positionsof(a)):
everywhere (S) {
printf ("Total number of elements in a is $d\n",
count_active_positionsof(a)); '

19

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Add for elemental functions:

A function qualified with the elemental qualifier is called an elemental function. The
function must be so-qualified at both the function definition and the function call; if not, the
behavior is undefined. See also §3.5.4.3, §3.6.6.4, and §3.7.1.

An elemental function can be executed either elementally or nonelementally. If none of the
arguments are parallel operands, and the calling function is not executing elementally, the
function is executed nonelementally (i.e., as a normal function). If one or more of the
arguments are parallel operands, or the calling function is executing elementally, then the
called function is executed elementally. All the parallel arguments must be of the same
shape; otherwise, the behavior is undefined. Nonparallel arguments to a function being
executed elementally are promoted to parallel in the usual manner.

When an elemental function is executing elementally, a shape is established at run time for
the function. This shape is the shape of the parallel arguments. An instance of the code
contained in an elemental function is executed for each active position of the established
shape. An elemental function is indivisible with respect to synchronization. That is, an
elemental function is treated as if it was a basic operator (like addition). All instances of the
function execute as if in parallel; there are no assumptions about the synchronization of the
intermediate steps, and there is a conceptual synchronization upon exit of the function.

When an elemental function is called from within an elemental function that is not executing
elementally, the inner function call also executes as if it were a nonelemental function.

When an elemental function is called from within an elemental function that is executing

elementally, the positions that execute the inner function call execute the body of the inner
called function elementally.

An elemental function that is declared to return a type other than void may return either a
parallel value or a nonparallel value. If the function is not executing elementally, or if the
function is executing elementally and is returning to a function that is executing elementally,
then a nonparallel value is returned. If the function is executing elementally and returning
to a function that is not executing elementally, then a parallel value of the returning
function's established shape is returned.

20

)

C:

~

[

10

15

20

25

30

DPCE Technical Report
Version 1.6

Examples

shape [101S;
int:S x, y;

X3J11/94-080
WG14/N395

int f(int a, int b) elemental

{

return(a+b);

}

int g(int a) elemental

{

return(f(a,a)):

}

f(x,y): /*
£i(x,1); /*
f(llZ); /*
g(x); /*
- g(l); /*

Returns parallel int of shape S with sum of
active positions of x and y; inactive
positions are unspecified. */

Returns parallel int of shape S with sum of 1
and active positions of x; inactive positions
are unspecified. */

Returns int with sum of 1 and 2. */

Returns parallel int of shape S with values
equal to two times the values of x in the
active positions; inactive positions are

unspecified. */

Returns two times 1. */

21

D

N

)

-

AL

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 : WG14/N395

Add for nodal functions:

A function qualified with the nodal qualifier is called a nodal function: The function must be
so-qualified at both the function definition and the function call; if not, the behavior is
undefined. See also §3.5.4.3, §3.6.6.4, and §3.7.1.

An invocation of a nodal function occurs as if the function is invoked once on each node of the
execution environment in Single Program, Multiple Data (SPMD) style; that is, as if a
separate thread is spawned on each node to execute the function body. Nodal functions
therefore provide an escape to a multithreaded programming model. These threads, one per
node, are only required by the execution model to synchronize upon return from the nodal
function.

On each node the body of the nodal function executes in a temporarily established single-
node environment called the nodal execution environment. That is, during the execution of a
nodal function, a call to positionsof(physical) will return 1. The execution environment of
the caller is reestablished upon return from the nodal function.

A nonparallel argument to a nodal function is first promoted to a parallel value of physical
shape by replication. Then the argument is processed as if it was originally a parallel
argument. . g

For a parallel argument to a nodal function, a thread of the nodal function will receive
exactly those positions of the argument that are stored on the node executing the thread.

For a parallel argument to a nodal function, if the corresponding parameter is of parallel
type, then for each thread executing the nodal function, a shape object will be created whose
rank, dimensions, context and layout are derived from the shape of the argument. A pointer
to this shape will be returned when the shapeof operator is applied to the parallel
parameter during execution of the nodal function. The corresponding parameter will receive
the values of its argument in those positions stored on the node executing the thread. The
correspondence of positions in the shape of the argument and positions in the shape of the
parameter is implementation-defined, but will be the same for all arguments of the same
shape. The shape object created is derived as follows:

* The rank of the shape of the parameter is equal to the rank of the shapé of the argument.

¢ The dimensions of the shape of the parameter are derived from the layout of the shape of
the argument. For each dimension the number of positions is equal to the number of
distinct parallel-index values in that dimension for the set of elements of the argument
mapped to the node executing the thread.

¢ The context of the shape of the parameter will be initialized from the context of the shape
of the argument: a position will be active in the parameter's shape if its corresponding
position in the argument's shape is active; otherwise the position will be inactive.

e The layout of the shape of the parameter will reflect that the nodal function executes in a
single-node environment. All positions will be mapped.to the single node.

If there is more than one parallel argument of the same shape, all being passed to
parameters of parallel type, then the same shape value shall be returned by dereferencing

the return value of shapeof applied to any of these parameters; otherwise the behavior is
undefined.

22

(23

10

15

20

25

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Note that parallel arguments are evaluated under context. If a reference is made to an
element of a parameter that corresponds to an inactive position of its argument, the behavior
is undefined. «

For a parallel argument to a nodal function, if the corresponding parameter is of nonparallel
pointer type, then for each thread executing the nodal function, an array object will be
created that contains the values of the argument in those positions stored on the node
executing the thread. - Memory for the array will be allocated at the time of the call to the
nodal function and will be freed upon return from the nodal function. The corresponding
parameter will receive the created array object. The correspondence of positions in the shape
of the argument and elements in the passed array is implementation-defined, but will be the
same for all arguments of the same shape.

For a parallel argument to a nodal function, if the corresponding parameter is of nonparallel
type and is not of pointer type, then the argument must be of physical shape and each
thread of the nodal function will receive as the parameter the single value of the argument
stored on the node executing the thread. If the argument is not of physical shape, then the
behavior is undefined.

When the element type of a parallel argument to a nodal function is a pointer type, the
pointer value at each position is converted so that the corresponding element of each thread's
parameter receives a pointer to the object stored at the corresponding position of the parallel
object pointed to by the argument's pointer value. That is, the argument is a parallel pointer
to parallel and each thread's parameter is derived from the argument's value according to the
position-oriented semantics described in §3.3.3.2.

If no positions of a parallel argument to a nodal function are stored on the node executing a
thread of the nodal function, then the behavior is undefined.

BTN

10

15

20

25

30

35

40

45

50

DPCE Technical Report : X3J11/94-080
Version 1.6 WG14/N395

Examples

void fl(int:void a, int b[], int *c, int d) nodal;
void f2(int:void *:void a, int *b[], int ** c) nodal;

shape [100]S;

int:8:x;

int:physical y;

int. iz

int:physidal *:physical physical_ Pp2Pi;
int:S *:S Pp2Pi;

call _one: fl(x, x, %X, Y):

/* For each thread executing fl1: the first parameter
receives a parallel of a new shape with number of
positions equal to the number of positions of x
stored on the node executing the thread:; the second
and third parameters receive arrays with lengths
equal to the number of positions of x stored on the
node; the fourth parameter receives a single value
corresponding to the single position of physical
stored on the node. Note that if the shape of x
has inactive positions, then there will be
undefined values in the corresponding elements of
the first three parameters. That is, only the
values of the active elements of x are assigned to
the corresponding elements of the first three
parameters. Similarly, if the position of physical —
stored on the node is inactive, the value of the
fourth parameter will be undefined; otherwise the
value of y at that position is assigned to the
fourth parameter. */

call _two: fl(y, ¥, ¥r ¥Y):

/* For each thread executing fl: the first parameter
receives a parallel with a single element, which is
the element of y stored on the node executing the
thread, if that position is active; the second and
third parameters each receive an array with a
single element; the fourth parameter is as in
call_one. */

b b BT 6 PR, B, . B 1
/* First, i is promoted to an int:physical for each
argument. Then each thread executing f1 gets the
single value of i in each parameter, if the
position of physical stored on the node executing
the thread is active. */

f1(x, x, x, x);
/* Undefined; x is not of shape physical */ . .

24

(G0

10

15

20

DPCE Technical Report X3.J11/94-080
Version 1.6 WG14/N395

f1(x, x, physical Pp2Pi, y);

/* The first two and the fourth parameters will be as
in call_one. For each thread executing fl1l, the
third parameter will receive a single value derived
from the element of the third argument stored on
the node, if that element is active, and an
undefined value otherwise. When this parameter
value is dereferenced inside f1l, the object
accessed will be the element stored on this node of
the parallel int pointed to by the argument element
from which the parameter was derived. */

f2 (Pp2Pi, Pp2pi, Pp2Pi);

/* For each thread executing f2: each parameter will
receive pointer values derived from the values of
Pp2Pi stored on the node executing the thread
(assuming all elements of Pp2Pi are active). The
value of each element of a parameter has position-
oriented semantics and will reference objects only
at its corresponding position. */

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.2.3 Structure and union members [ISO §6.3.2.3, ANSI §3.3.2.3]
Constraints
Revise:

The first operand of the . operator shall have a qualified or unqualified, parallel or
nonparallel structure er union type, and the second operand shall name a member of that
structure or union type.

The first operand of the -> operator shall have type “pointer to qualified or unqualified,
parallel or nonparallel structure” or “pointer to qualified or unqualified, parallel or
nonparallel union,” and the second operand shall name a member of the structure or union of
the type pointed to. '

Semantics
Add:

If the first operand of the . or -> operator is of parallel structure or union type, the result is a
parallel value of the same type as the member designated by the second operand; the value
at each position of the result is the designated member at the corresponding position of the
first operand. If the first operand is an lvalue, the result is an lvalue.

Examples

shape [10]S:

struct Struct { int i; float f£; };
struct Struct:S s:

struct Struct:S *p;

s.i; /* Denotes a parallel int value whose elements are

the corresponding int members of the parallel
struct s */

p->f: /* Denotes a parallel float value whose elements are

the corresponding float members of the parallel
struct pointed to by p */

26

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.2.4 Postfix increment and decrement operators [ISO §6.3.2.4, ANSI §3.3.2.4]
Constraints
BRevise:

The operand of the postfix increment or decrement operator shall have qualified or
unqualified, parallel or nonparallel scalar type and shall be a modifiable lvalue.

Semantics
Add:

If the operand of the postfix increment or decrement operator is of parallel type, each
position of the parallel operand is incremented or decremented, respectively.

Examples

shape [10]S;

int:S x;

int:S y[20];

int:S *p2Pi = &y[10]; /* Points to parallel int which is
the 10-th element of y */

int:S *:S Pp2Pi = y; /* Every element of Pp2Pi points to
parallel int y[0] */

x++; /* Increments each element of x */

y[i]=-=; /* Decrements each element of y[i] */

pP2Pi++; /* Increments p2Pi to point to the next
parallel int in the array y, namely
y[11] */

Pp2Pi++; /* Increments each element of Pp2Pi, which
would result in each element of Pp2Pi
pointing to the next parallel int in
the array y, namely y([1] */

[3]Pp2Pi = &y[5]; /* Assigns element 3 of Pp2Pi to point to
y[5] */

Pp2Pi++; /* Increments each element of Pp2Pi; now

all elements point to y[2], except
[31Pp2Pi points to y[6] */

83

27

10

15

20

25

30

35

40

45

DPCE Technical Report
Version 1.6

3.3.3 Unary Operators [ISO §6.3.3, ANSI §3.3.3]
Repi ndicated:
Syntax

unary-expression:
postfix-expression
++ unary-expression
—— unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
shapeof (parallel-variable-identifier)
parallel-index postfix-expression
reduction-operator postfix-expression

parallel-variable-identifier:
identifier

parallel-index:
[index-or-slice] parallel-index
[index-or-slice]

index-or-slice:
index
slice

index:

expression

slice:
first : last : stride
first : last

first:
expression

last:
expression

stride:
expression

reduction-operator: one of

+= - *x=
&= A= I=
<?= >2?=

28

X3J11/94-080
WG14/N395

(314

10

15

20

25

30

35

40

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.3.1 Prefix increment and decrement operators [ISO §6.3.3.1, ANSI §3.3.3.1]
Constraints
Revise:

The operand of the prefix increment or decrement operator shall have qualified or
unqualified, parallel or nonparallel scalar type and shall be a modifiable lvalue.

Semantics
Add:

If the operand of the prefix increment or decrement operator is of parallel type, each position
of the parallel operand is incremented or decremented, respectively.

Examples

shape [10]S;

int:S x;
int:S y[20]; /* An array of parallel ints */
int:S *p2Pi = &y[5]; /* Pointer to the parallel int which is

the 5-th element of y */
int:S *:S Pp2Pi = &x; /* Parallel pointer to parallel int where
every pointer points to the parallel

int x */
-—x; /* Decrements every element of x */
--y[10]; /* Decrements every element of y[10] */
--p2Pi; /* Decrements p2Pi to point to the

preceding parallel int, y[4] */

-=(*p2Pi) ; /* Decrements every element of the
parallel int y[4] */

--(*Pp2P1i) /* Decrements the elements of the parallel
ints denoted by *Pp2Pi */

0

29

J

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

38.3.3.2 Address and indirection operators [ISO §6.3.3.2, ANSI §3.3.3.2]

Constraints

Revise f; 3 llel:

The operand of the unary & operator shall be either a function designator, or an lvalue that

designates an object that is not a bit-field and is not declared with the register storage-
class specifier.

Add:

The & operator shall not be applied to a parallel lvalue that results from parallel indexing or
from array subscripting with a parallel subscript.

Note: you cannot take the address of an element of a parallel operand, nor of a parallel
Ivalue produced by parallel indexing or by parallel subscripting.

Semantics
r pointer T
The application of & to a parallel lvalue produces a pointer to that lvalue, a pointer to

parallel. If the operand has type “parallel T of shape S” the result has type “pointer to
parallel T of shape S.”

A parallel pointer is not produced by application of & to a parallel object, although a parallel
pointer value may be produced by replication of a pointer to parallel or during parallel
subscripting of an array (see §3.3.2.1).

Note that the application of & to a shape object produces a pointer to that shape.

30

10

15

20

25

30

35

40

DPCE Technical Report
Version 1.6

Examples

shape [10]S;
shape *sp;
float.a, b;
int..d:
int:S.x;
double:S y,. z;
int:S *p2Pi;

float *:S Pp2f:
double:S *:S Pp2Pd;

int S *A[20);

double:S B(30];

sSp = &S;

p2Pi = &x;
p2Pi = A;
Pp2f = &a;

[31Pp2f = &b;

Pp2Pd = &y:;

[2]Pp2Pd = &z;

Pp2Pd = B+x;

&[3]1x;
&[xly:
&B[x];

/*

/*
/*

X3J11/94-080
WG14/N395

Shape S */

Pointer to shape */
Nonparallel floats */
Nonparallel int */

Parallel int */

Parallel double */

Pointer to parallel int */
Parallel pointer to float */
Parallel pointer to parallel double */
Array of parallel int */
Array of parallel double */

Assigns sp to point to shape S */

Assigns p2Pi to point to parallel int x
*/

Since A is an array, it decays to a
pointer to parallel int. p2Pi is

assigned that pointer, which is the
address of the 0-th element of A */

Assigns each element of Pp2f to point
to float a */

Assigns 3rd element of Pp2f to point to
float b */

Assigns each element of Pp2Pd to point
to parallel double y */

Assigns 2nd element of Pp2Pd to point
to parallel double z */

Assigns Pp2Pd to be the parallel
pointer to double returned as the sum
of B and the parallel int x */

Constraint violation */

Constraint wviolation */
Constraint violation */

31

10

15

20

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

i S

The result of the . operator applied to a pointer to parallel type T of shape S is a parallel
Ivalue of parallel type T and of shape S.

The result of the * operator applied to a parallel pointer of shape S to nonparallel type T'is a
parallel value of type T and shape S. The value at each position of the resulting parallel T
value is the result of dereferencing the pointer at the corresponding position of the parallel
pointer.

The result of the * operator applied to a pointer P of type “parallel pointer of shape S to
parallel type T also of shape S” is a parallel value of parallel type T and shape S. The value
at each position of the resulting parallel T value is the result of position-oriented
dereferencing of the parallel pointer, yielding the value at the corresponding position of the
parallel T object referenced by the pointer at that position of P. That is, for each position i in
shape S, the value at position i is:

[i] (*[1]P) /* Where P is the parallel pointer x/
Add for pointer to shape:

The result of the * operator applied to a pointer to shape produces the shape.

32

D

)

op
-

10

15

20

25

30

35

40

DPCE Technical Report
Version 1.6

Examples

float a,b:;

shape [10]S:;
shape *sptr = &S;
int:S.x =37
int:S *p2Pi = &x;

double:S B[30];
float *:S Pp2f = &a;

double:S *:S Pp2Pd;

[7]Pp2f = &b;

[51x = 2;

Pp2Pd = B+x;

*sptr;

*p2Pi;

*pPp2f;

*Pp2Pd;

/*

/*
/*

/*

X3J11/94-080
WG14/N395

Initialized to point to S */
Initializes all elements to 3 */
Initialized to point to

parallel int x */

Initializes all elements to point to
float a */

Assigns the 7th element of Pp2f to
point to float b */

Assigns 2 to the 5th element of x */

Assigns corresponding elements of Pp2Pd
to point to parallel double elements

of B as directed by parallel int x;

all elements get &B[3], except the

5th element of Pp2Pd will get &B[2] */

Denotes the shape pointed to by sptr;
in this case S */

Denotes the parallel int x */

Denotes a parallel float of shape S; in
this case equal to a in all positions
except equal to b in position 7 */

Denotes a parallel double of shape S;
in this case equal to the corresponding
element of B[3] in all positions’ except
equal to the corresponding element of
B[2] in position 5--i.e., the value

in position i will be [i]B[3], except
in position 5, the value will be
[s1B[2]. */

33

10

15

20

25

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.3.3 Unary arithmetic operators [ISO §6.3.3.3, ANSI §3.3.3.3]

Constraints

BRevise:

The operand of the unary + or - operator shall have parallel or nonparallel arithmetic type;
of the ~ operator, parallel or nonparallel integral type; of the ! operator, parallel or
nonparallel scalar type.

Semantics

Add:

If the operand of a unary arithmetic operator is of parallel type, the result is a value of the
parallel type, where the value at each position of the result is determined by applying the

operator to the operand's value at the corresponding position.

Examples

shape [20][20]S;
float:s £;

=£3 /* Denotes a parallel float value whose value at each

position is the negation of the value at the
corresponding position of f */

34

10

15

20

25

30

35

40

45

50

55

DPCE Technical Report X3J11/94-080
Version*1.6 WG14/N395

3.3.3.4 The sizeof operator [ISO §6.3.3.4, ANSI §3.3.3.4]
Constraints
Revise:

The sizeof operator shall not be applied to an expression that has function type or an
incomplete type, to a parallel type with incomplete element type, to the parenthesized name
of such a type, or to an lvalue that designates a bit-field object.

Semantics
Add:

The result of the sizeof operator applied to a parallel type or a variable of parallel type is
the size of the element type; it reflects the storage requirements in bytes for an element,
including possible alignment constraints.

Hence, it may not be the same as the result of sizeof applied to its nonparallel
counterpart.

Examples

shape [10]S, [20]T:
int:S a; '

/* The following expressions evaluate to 1 o4
sizeof (int:S) == sizeof (int:T);
sizeof (a) == sizeof (int:S);

/* The following does not necessarily evaluate to 1 x/
sizeof (int:S) == sizeof(int);

The result of the sizeof operator applied to an array object whose element type is parallel is
the product of the array length and the sizeof operator applied to the element type.

Examples

shape [100]S:
intS:xf103:

/* The following expression evaluates to 1 * /
sizeof (x) == (10 * sizeof(int:8§));

The result of the sizeof operator applied to a shape variable or to a shape type is the
number of bytes in a shape object.

'Examples

shape *Sptr;
shape [101]S:

Sptr = (shape *) malloc(sizeof (shape)):
/* Allocates new shape object */

sizeof (S): /* Denotes the size of the shape object S */

35 3

Y'Y

o

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.3.5 The shapeof operator [NEW]
Constraints

The shapeo£ operator shall be applied only.to an identifier of a previously declared variable
of parallel type. -

Semantics

The shapeof operator yields a pointer to the shape object associated with its operand.
The shapeof operator may be used wherever a pointer to a shape may be used.

Examples

shape [10]S:

int:S x;

shape *sp = shapeof (x):

int: (*sp) y; /* x and y are associated with the
same shape object */

intisSi*z;

/* The following evaluates to 1 */
dimof (*shapeof (x),0) == dimof(S,0) == 1;

/* Allocates an array of 20 parallel ints */
z = (int:S *)palloc(sp,20*sizeof (int:S));

3.3.3.6 Parallel indexing [NEW]
Constraints
The postfix-expression shall be of parallel type.

The parallel-index shall consist of n index-or-slice expressions where n is the rank of the
shape of the nearest enclosing parallel expression being indexed. Each index expression
shall be of integral or parallel integral type. Each subexpression of a slice expression shall be
of integral type.

All index expressions of parallel integral type in the same parallel-index shall be of
compatible shape type.

If any index-or-slice expression in a parallel-index is a slice expression, all index expressions
in the same parallel-index shall be of integral type, and the postfix-expression shall denote a
parallel lvalue.

If the postfix-expression is being sliced, it shall not be a sliced expression.

An expression may be sliced only once; nested slicing is not allowed.

36

w—d

—

to

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

If the postfix-expression is being parallel indexed and is itself a parallel-indexed expression, it
must be enclosed in parentheses.

This allows the compiler to determine the rank of each of the parallel-index expressions.
Note that in order to parallel index an expression more than once, the intermediate results
must be parallel, which occurs when one or more index expressions is of parallel type. See
the examples below.

Semantics

A postfix-expression, E2, preceded by a parallel-index, E1, which consists of a sequence of one
or more index expressions enclosed in square brackets [1,is a parallel-indexed expression.
The shape of E2 is herein denoted by $2, and the shape of each of the index expressions of
parallel integral type in E1, if any exist, is herein denoted by s1.

Note that such an expression is called a parallel-indexed expression because the operand
being indexed is parallel, regardless of whether any index expression is of parallel integral

type.

A postfix-expression, E2, preceded by a parallel-index, E1, which contains one or more slice
expressions, is a sliced expression. The shape of E2 is herein denoted by s2.

r -1 ressi 1 r
If all the index expressions of E1 are of integral type, a parallel-indexed expression
designates an individual position of the parallel object being indexed. The type of the
parallel-indexed expression is the element type of E2. The result designates a selected

element of E2; if E2 is an lvalue, the result is an lvalue.

Note that parallel indexing by a nonparallel index always selects the designated position of
the expression being indexed, independent of the context of the shape of that expression.

If the index expression designates a nonexistent position of the expression being indexed, the
behavior is undefined.

Examples

shape [10]S, [5][S]T:

int:S a;

float:T b;

Nt 3%

[(8la:; /* Selects the int at the 8-th position of a */
(11 031b; /* Selects the float at position (i,j) of b */
[100]a; /* Undefined behavior since index is 100 * /
[5]1b: /* Constraint violation - improper indexing for

rank 2 object */

b

-

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

ATy Sy i

In a parallel-index, index expressions of parallel integral type need not be the same shape as
the parallel expression being indexed.

This is an exception to the general rule that parallel operands to binary operations must
have the same shape.

If more than one of the index expressions in E1 is of parallel type, all the parallel index
expressions must be of the same shape; otherwise, the behavior is undefined.

If one or more of the index expressions in E1 is of parallel type, each nonparallel integral
index expression is first promoted to a parallel int of the same shape as the parallel index
expressions by replicating the integral expression value. The resulting parallel-index E1
designates a mapping from the shape S2 of the postfix-expression E2 to the shape S1 of E1.
The type of the result is a parallel object of shape S1 whose element type is the element type
of E2. The result is a parallel value designating elements of E2 whose selection and order is
as directed by the index expressions E1; if E2 is an lvalue, the result is an lvalue.

When a parallel-index is of parallel type, the mapping behaves according to the following:

/* When used as a modifiable lvalue, updated by E3 */
for (i1=0; i1<dimof(S1,0); ii++) :

for (ip=0; im<dimof (S1,m-1); imt+)
([i1]...[imlindex1]... ([i1]...[imlindexp] E2 =
(i1)...[(im]E3;

/* When used as an rvalue, as if temporary T3 created */
Type:S1 T3;
for (i1=0; ij<dimof(S1,0); i1++)

for (ip=0; im<dimof (S1,m-1); iptt)
fig) [AMIT3. =
[[i1]...[im]indexll...[[i1]...[im]indexn] E2;

where S1 is of rank m , 2 is of rank n, index; indicates the j-th parallel index value of E1,
and Type is the element type of E2. That is:

e when used where a modifiable lvalue is expected (i.e., on the left side of an assignment),
the mapping selects elements of the object designated by E2 to be updated. It may select
the same element to be updated more than once, and some elements may not be selected
to be updated at all. The result for an element selected more than once is unspecified; it
will be chosen in an implementation-defined manner from one of the values of the
elements selected from E3 to be mapped to that position of E2.

e when used as an rvalue, the mapping produces a temporary parallel value of shape S1

whose elements are selected from E2 according to the index expressions, where the same
element of E2 may be selected multiple times, and not all elements of E2 need be selected.

38

—h

-

} o

10

15

20

25

30

35

40

DPCE Technical Report
Version 1.6

Examples

shape [4]1S, [4]([8]T:
int:S indexl, index2;
float:T a;

float:S b;

int i;

index1l

index2 25,

[index2]indexl1;

[3] ([index2]indexl);

(2] [index2]index1;

b = [indexl] [index2]a:

for (i=0; i<4; i++)

3 - pcoord(S,0):

/*
/*

/*

/*

/*

X3.J11/94-080
WG14/N395

Assigns indexl to be {3,2,1,0} */

Assigns 2 to all elements of
index2; {2,2,2,2} */

Denotes a parallel int of shape
S whose values at each position
are the value of [2]indexl;
{1,2%2,1} */

Denotes element 3 of the parallel
int denoted by [index2]indexl */

Constraint violation: improperly
parenthesized */

Assigns some elements of a to b as
directed by the parallel ints indexl
and index2; equivalent to the loop
assigning b below; b gets
{[31[21a,[2][2]a, (1] ([2]a, [0]([2]a} */

[(i1b = [[ilindexl] [[i]index2]a;

[index1] [index2]a = b;

for (i=0; i<4; i++)

/*

[[i]index1l] [[i]index2]a

Assigns the elements of b into a as
directed by the parallel ints indexl
and index2; equivalent to the loop
assigning a below */

= [i]b;

39

~

10

15

20

25

30

35

40

DPCE Technical Report
Version 1.6

X3J11/94-080
WG14/N395

The context of S1 also affects which positions are selected in a parallel-indexed expression.
There is an implicit contextualization of the resulting parallel int denoted by E1.

If a value in the parallel int denoted by E1 selects a nonexistent position of E2, the behavior

is undefined.
Examples

shape [5]S;
int:S a, b, c;

a = pcoord(S,0) + 1;

[2]a = 10;
bi= 1;
where (a<5) {.
[alb = 0;
}
a = pcoord(S,0) + 5;
b = pcoord(S,0) %% 3;
c = pcoord(S,0):
[bla = c;

a = pcoord(S,0) + 5;

c = [bla;

[alb;

a gets {1, 2, 3, 4, 5} */

atis now (1, 2; 10, 4, 5} */

bigets {1, 1, y;:=3pal}i%/

Updates elements 0,1, and 3 of b */
to be 0; elements 2 and 4 are not */
updated; b is now {0, 0, 1, 0, 1} */
a gets (5, 6, 7, 8, 9} */

bigets {0, 1,x2;:0;8130%/

c gets {0, .1, 2, 3, 4} */

Updateé elements 0, 1, and 2 of a;
element 0 gets either 0 or 3;

element 1 gets either 1 or 4 */

a gets {5, 6, 7, 8, 9} */

Updates all elements of c; elements 0
and 3 of c get [0]a; elements 1 and 4
of ¢ get [1l]a; element 2 of c gets
[2]la; ¢ is now {5, 6, 7, 5, 6} */

Undefined; tries to select nonexistent
positions of b */

40

-

-~

(wp)

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Sliced £l %3

Each component slice expression or index expression in the parallel-index of a sliced
expression denotes a sequence of positions along the axis of shape S2 that corresponds to the
placement of the component within the sequence of components comprising the parallel-
index. »

The sequence denoted by a slice expression is as follows:
¢ The first expression denotes the first position in the sequence.
¢ The last expression denotes a limit (ceiling or floor) for the last position in the sequence.

e The stride expression denotes a stride or increment between successive positions in the
sequence.

If the stride expression is omitted, a stride of 1 is assumed.
If the stride is 0, the sequence denoted is empty.

If the stride is positive, the sequence consists of the regularly spaced sequence of positions
beginning with that denoted by the first expression and proceeding in increments of the
stride up to the largest position not greater than that denoted by the last expression.

If the stride is negative, the sequence begins with the position denoted by the first expression
and proceeds in increments of the stride down to the smallest position equal to or greater
than that denoted by the last expression.

The sequence denoted by an index expression consists of the single position denoted by the
expression.

Examples

shape [100]([100]S:
shape [10][10][10]T;
intsh x}

floataTnys

[11[0:99:101x; /* Denotes the sequence {1} in the first axis,
and {0,10,20,30,40,50,60,70,80,90} in the
second axis; the shape of the result is
"shape [1][10]". */

[9:5:-1][3:7:2]1x; /* Denotes the sequence {9,8,7,6,5} in the first
axis, and {3,5,7) in the second axis; the
shape of the result is "shape [5]1([3]". */

[1:10:2]([5]1[10:5:-1]y:
/* Denotes the sequence {1,3,5,7,9} in the first
axis, {5} in the second axis, and
{10,9,8,7,6,5} in the third axis. Since 10
is a nonexistent position in the third axis
of T, the behavior is undefined. */

41

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

If the sequence denoted by any component of a parallel-index is empty or contains
nonexistent positions for the corresponding axis in shape S2, the behavior is undefined.

Otherwise, these sequences designate a mapping from the shape S2 of E2 to a conceptual
shape $3, which has rank and dimensions as described below, an unspecified layout, and
context in which all positions are active.

No shape object.is created for the shape s3; the concept of the shape s3 is used only for
expository purposes in describing the semantics of sliced expressions. A sliced expression
denotes a subobject of a parallel object and may only be used in expressions involving
nonparallel operands and other sliced expressions of shape s3 (see §3.3).

The shape S3 has rank equal to that of S2, but the dimension along each axis is equal to the
number of positions in the sequence denoted by the corresponding slice expression for that
axis in the parallel-index.

The type of the result is a parallel type of shape S3 whose element type is the element type of
E2. The result is a parallel value designating elements of E2 whose selection and order is as
directed by the sequences of positions denoted by the components of E1; if E2 is an lvalue, the
result is an lvalue.

The mapping designated by a sliced expression behaves according to the following:

/* When used as a modifiable lvalue, updated by E3 */
for (i1=0; i1<dimof(S3,0); ii++)

for (ip=0; ir<dimof(S3,r-1); ir++)
[seqlij]...[seqri JE2 = [i1]...[ir]E3;

/* When used as an rvalue, as if temporary T3 created */
Type:S3 T3;
for (i1=0; i1<dimof(S3,0); ij++)

for (ip=0; ir,<dimof(S3,r=1); ip++)
[i1]...[i2]1T3 = [seqlj,]...[seqrj]E2;

where r is the rankof£ (s3), Type is the element type of E2, and seqk;j is the j-th element of
the k-th sequence of positions denoted by the parallel-index, corresponding to axis (k-1).

Note that element selection from E2 is independent of the context of S2; the elements at the
positions designated by the mapping are always selected.

If the result of the sliced expression E1 E2 is used in an expression in which another parallel

operand is the result of a sliced expression, but does not have shape equivalent to $3 as
described, the behavior is undefined.

42

10

15

20

25

30

35

40

45

DPCE Technical Report
Version 1.6

Examples

shape [10][10]S:;
shape [1024]T;
shape [512]U;
int:S x, yi
float:T z7
float:U w;

float result:;

[0:9:2][0:9:2]x

[1:9:2][1:9:2]x

[0:4:1])([0:4:1]1x

/*

[9:0:-1][0:9:1]x

/*

[9:0:-11([0:9:1]1x

/*

X3J11/94-080
WG14/N395

5; /* Assigns elements at even positions of x

to be 5 */

10; /* Assigns elements at odd positions of x

to be 10 */

[5:9:1])[5:9:1])x%;

Assigns upper corner of x from the
lower corner of x */

[0:9:1]([0:9:1]y:

Assigns x to be the transpose of y */

[0:9:1]([0:9:1]1x;

Assigns x to be its own transpose; note
that all reads from x will be done
before writes to x */

[01[0:9:1]x = [1][0:9:1]x + [2][0:9:1]x%;

/*

[9:0:-1][0:9:11x = x; /*

[0:1023:1)z += 1; /*
result = += [0:511]z; /*
result = (+= [0:511:1]z) -

/*
w = [0:511:1]z + w; /*

Assigns first row of x to be the sum of
the second and third rows of x */

Undefined behavior; all operands must
be nonparallel or sliced expressions of
equivalent shape */

Add one to every element of z */

Finds sum of first 512 elements of z */
(+= [512:1023:112);

Finds difference of sums of first and
second halves of z */

Undefined behavior; all operands must

be nonparallel or sliced expressions of
equivalent shape */

43

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.3.7 Unary reduction operators [NEW]

Constraints

The operands of unary +=, -=, x=, and /= shall be of parallel arithmetic type.

The operands of unary &=, =, and | = shall be of parallel integrai type.

The operands of unary '<?= and >?= shall be of parallel arithmetic or parallel pointer type.
Semantics l

These operators perform a reduction: the specified operation is performed on the operand
values, resulting in a nonparallel value.

The result of the += operator is the sum of all the elements of the operand. If no positions of
the operand are active, the result is 0, cast to the element type of the operand.

The result of the -= operator is the negation of the sum of all the elements of the operand. If
no positions of the operand are active, the result is 0, cast to the element type of the operand.

The result of the *= operator is the product of all the elements of the operand. If no positions
of the operand are active, the result is 1, cast to the element type of the operand.

The result of the /= operator is the reciprocal of the product of all the elements of the
operand. If no positions of the operand are active, the result is 1, cast to the element type of
the operand.

The result of the &=, #=, and | = operators are the bitwise AND, XOR, and OR, respectively,
of all the elements of the operand. If no positions of the operand are active, the result of &=is
~0, and the result of ~=and |=is 0.

The result of the <?= and >?= operators is the minimum and maximum, respectively, of all
the elements of the operand. If no positions of the operand are active, the result is the
minimum or maximum value for the element type, respectively, as defined in <1imits.h>
for integral types and <£loat .h> for floating types.

Examples

shape [1000]S;
int:$ x;
int result:;

result = +=x; /* Assigns result to be the sum of all the
elements of x */

result = <?=x; /* Assigns result to be the minimum valued
element of x */ . *
44

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.4 Cast Operators [ISO §6.3.4, ANSI §3.3.4]
Constraints .
Revise:

Unless the type-name specifies void type, the type-name shall specify qualified or unqualified,
parallel or nonparallel, scalar type and the operand shall have parallel or nonparallel scalar

type.

A pointer to parallel type shall not be cast to a pointer to nonparallel type. A pointer to
nonparallel type shall not be cast to a pointer to parallel type.

A parallel pointer shall not be cast to a nonparallel pointer.

Semantics
Add:

If the type-name specifies a parallel type and the operand is also of parallel type, then if the
shape of the parallel type and the shape of the operand are the same, the result is a parallel
value where the value at each position is the result of the conversion (if any) represented by a
cast to the nonparallel type counterpart of the type-name; if the shape of the type and the
shape of the operand are not the same, the result is undefined.

_Parallel to parallel casts should not imply data movement or communication.
Examples

shape [20]S:
shape [10]([2]T:

int:S a;

‘(float:S) a; /* Denotes the parallel float whose
elements are the converted int values
of corresponding positions of a */

(int:physical) a; /* Undefined behavior */

(int:T) a; /* Undefined behavior */

If the type-name specifies a parallel type and the operand is of nonparallel type, the result is
a parallel value of the same shape as the parallel type that has the operand value replicated
and converted as indicated at each position.
Examples

shape [200]S;

(int:S) . 1.0; /* Denotes a parallel int of shape S
whose elements all have value 1 */

45

10

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

If the type-name specifies a nonparallel type and the operand is of parallel type, the result is
to select an element of the operand and apply the indicated conversion to the selected
element. The method of selecting the operand element is implementation-defined.

Examples

shape [200]S;
int:S a;

(double) a; /* Selects one of the 200 elements of a,
and converts it to double */

46

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.5 Multiplicative Operators [ISO §6.3.5, ANSI §3.3.5]
Syntax
Revise:

multiplicative-expression:
cast-expression
multiplicative-expression % cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression
multiplicative-expression %% cast-expression

Constraints
Revise:

Each of the operands shall have arithmetic or parallel arithmetic type. The operands of the %
and %% operators shall have integral or parallel integral type.

Semantics
Add:

The result of the $% (modulus) operator is the remainder on division of the first operand by
the second, but unlike the % operator, the result has the same sign as the first operand. The
modulus operator evaluates the following formula to.compute “a %% b”:

a - (b * floor(a / b))
Examples

shape [10][20]S;
float:S £
int:S i;

£k 25 /* Denotes a parallel float value whose value at
each position is 2 times the value at the
corresponding position of £ . Note that the
nonparallel operand 2 will be promoted to a
parallel int value of shape S whose value
at each position will be 2. The usual
arithmetic conversions will be applied to
this parallel int value to convert it to a
parallel float value. */

i %% 2; /* Denotes a parallel int value of shape S
whose value at each position is the true
modulus resulting from dividing the values at
the corresponding positions of i by 2. */

47

»

10

15

20

25

DPCE Technical Report X3J11/94-080
Version 1.6 : WG14/N395

3.3.6 Additive Operators [ISO §6.3.6, ANSI §3.3.6]
Constraints
r r r inter
For addition, one of the following shall hold:
¢ both oi)erands shall‘haye arithmetic or parallel arithmetic type;

e one operand shall be a pointer to an object type, and the other shall have integral or
parallel integral type; or

e one operand shall be a parallel pointer to an object type, and the other shall have integral
or parallel integral type.

For subtraction, one of the following shall hold:
* both operands have arithmetic or parallel arithmetic type;
e both operands are pointers to qualified or unqualified versions of compatible object types;

e the left operand is a pointer to an object type, and the right operand has integral type or
parallel integral type; or

o theleft operand is a parallel pointer to an object type, and the right operand has integral
or parallel integral type.

48

——

[V

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Semantics
\dd f) llel l llel poi '

Adding an integral value to, or subtracting an integral value from, a pointer to parallel type
results in a pointer to a subsequent or preceding element of an array whose element type is
the parallel type. Subtracting two pointers to parallel, when both point to elements of the
same array object, results in the difference of the subscripts of the two array elements.
Subtracting two pointers to parallel which do not point to elements of (or one past the last
element of) the same array object will result in undefined behavior.

Pointer arithmetic with pointers to parallel objects behaves just as does pointer arithmetic
with pointers to nonparallel objects.

Adding a parallel integral value to, or subtracting a parallel integral value from, a parallel
pointer results in a parallel pointer of the same type and shape whose value at each position
is the sum or difference of the pointer value at the corresponding position of the parallel
pointer and the integral value at the corresponding position of the parallel integral value.
As usual, both operands must be of the same shape or the behavior is undefined.

If a parallel integral value is added to or subtracted from a nonparallel pointer value, or ifa
nonparallel integral value is added to or subtracted from a parallel pointer value, the
nonparallel operand is first promoted to parallel, and then the addition or subtraction
proceeds as described above.

Subtracting two parallel pointers results in a parallel int whose value at each position is the
difference of the subsecripts of two array elements, provided the pointer values at the
corresponding positions of the operands point to elements of the same array object; otherwise
the value at this position is undefined.

49

‘o b

i

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395
Examples

10

15

20

25

30

35

40

45

50

55

shape [10]S, [20]T:
float:s £;

double:S g;

int:S h([100];
int:S*p2Pi;

int:S index;

int:T index2;

int:S *:S Pp2Pi;
int:8 *:8 PpePi 2;

f = g;

p2Pi = &h(S5];

Pp2Pi = &h[50];

Pp2Pi_2 = &h[100];

[51Pp2Pi_2 = &index;

/*

/*

/*

/*

Denotes a parallel double whose

value at each position is the
difference of the values at the
corresponding positions of £ and g. */

Assigns p2Pi to point to 5th element of
array of parallel ints h */

Assigns every element of Pp2Pi to point
to. the 50th element of h */

All point to h[100] */

The 5th element points to index */

p2Pi + 5; /* Denotes a pointer to the 10th element
of h */
Pp2Pi - 5; /* Denotes a parallel pointer where every

p2Pi - index;

Pp2Pi + index;

&h[0] - p2Pi;

Pp2Pi_2 - Pp2Pi;

Pp2Pi_2 + index2;

p2Pi - &index:;

/*

/*

/*
/*

element points to the 45th element of h
*/

Denotes a parallel pointer whose value
at each position is the difference of

&h([5] and the int at the corresponding
position of index */

Denotes a parallel pointer whose value
at each position is the sum of the
pointer value and the int value in the
corresponding positions of Pp2Pi and
index, respectively */

Denotes the difference of subscripts:
in this case, the integral value -5 */

Denotes a parallel int whose value at
each position is the difference of the
subscripts; in this case the difference
is 50 in every position, except in
position 5, where the value is
undefined */

Undefined, shapes are not the same */

Undefined, not same array object */

50

10

15

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.7 Bitwise Shift Operators [ISO §6.3.7, ANSI §3.3.7]
Constraints

Revise:

Each of the operands shall have integral or parallel integral type.
Examples

shape [100]S:;
int:S bits;

bits >> 2; /* Denotes a parallel int value of shape S,
whose value at each position is the value at
the corresponding position of bits shifted
right by 2. */

51

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.8 Relational Operators [ISO §6.3.8, ANSI §3.3.8]
Syntax
Revi indi I
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression <? shift-expression
relational-expression >? shift-expression
Constraints
Revise:
One of the following shall hold:
e both operands have arithmetic or parallel arithmetic type;

e both operands are pointers or parallel pointers to qualified or unqualified versions of
compatible object types; or

o both operands are pointers or parallel pointers to qualified or unqualified versions of
compatible incomplete types.

Semantics

If one operand is of parallel type and the other operand is of nonparallel type, the operand of
nonparallel type is first promoted to a parallel type of the same shape as the parallel
operand, as described in §3.2.3.

The <? operator results in the minimum value of its operands.

The >? operator results in the maximum value of its operands.

Operands which are pointers to parallel observe the same semantics as pointers to
nonparallel.

Operands which are parallel pointers observe the same semantics elementally as ordinary

pointers, producing a parallel result whose value at each position is the result of applying the
operator to the values at the corresponding positions of the operands.

52

10

15

20

25

DPCE Technical Report
Version 1.6

Examples

shape [100]S;
int:S x, y»

*:S pptrl, *:S

/*

int:S z(100];

int:S *ptrl, *ptr2;
int:S

x > 0;

X <2 i

ptrl > .ptr2;

pptrl > pptr2;

/*

/*

/*

X3J11/94-080
WG14/N395

pptr2;

Denotes a parallel int value of shape S
whose value at each position is the result
(0 or 1) of the > operator applied to the
value at the corresponding position of

x and 0. */

Denotes a parallel int value of shape S
whose value at each position is the minimum
of the values at the corresponding positions
of x and y. */

Denotes an int value, which is 1 if ptrl
points to an element of the same array as
ptr2 but with a higher subscript, and 0 or
undefined otherwise. */

Denotes a parallel int value of shape S

whose value at each position is the result of
comparing the pointer values at the
corresponding positions of the operands. */

53

10

15

20

25

30

35

40

45

50

55

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.9 Equality Operators [ISO §6.3.9, ANSI §3.3.9]
Constraints

Revise:

One of the following shall hold:

* both operands have 'arithmetic or parallel arithmetic type;

e both operands are pointers or parallel pointers to qualified or unqualified, parallel or
nonparallel, versions of compatible types; '

* one operand is a pointer or a parallel pointer to an object or an incomplete type, and the
other is a pointer or a parallel pointer to a qualified or unqualified version of void;

* one operand is a pointer or a parallel pointer to nonparallel type and the other is a null
pointer constant; or

e one operand is a pointer to parallel type and the other is a null pointer-to-parallel
constant (see §3.2.2.3). :

Examples

shape [100][100]S, [100]([100]T:
shape [100] U, V;

shape *psl, *ps2;

float:s x, y:

float:S *ppf = &x;

X == y; /* Denotes a parallel int value of shape S
whose value at each position is the result
(0 or 1) of the == operator applied to the
values at the corresponding positions of x

and y. */
/* Assign the following values */
vV ="T;
psSl = &S;
ps2 = &T;
x =1.0;

[(01[0]x = 0.0;

/* The following all evaluate to 1 */
S == T;
S !'=U;
S == V;
where (x > 0) {
S !=7T;
}
*shapeof (x) == *shapeof(y):
psl != ps2;
*psl == *ps2;
pPpf == &x;
ppf !'= &y;

ma i

&2

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.10 Bitwise AND Operator (ISO §6.3.10, ANSI §3.3.10]
Constraints

Revise:

Each of the operands s_hall have integral or parallel integral type.
Examples

shape [1000]S:;
int:S x;

x & 0x01; /* Denotes a parallel int value of shape S
whose value at each position is the result of
the & operator applied to the values at the
corresponding positions of x and 0x01.
Hence, the value at each position is 1 if the
least significant bit of x at that position
is 1, and 0 otherwise. */

3.3.11 Bitwise Exclusive OR Operator [ISO §6.3.11, ANSI §3.3.11]
Constraints

Revise:

Each‘ of the operands shall have integral or parallel integral type.

Examples

shape [20]([20]S;
int:S" X,V

KN /* Denotes a parallel int value of shape S
whose value at each position is the result of
the "~ operator applied to the values at the
corresponding positions of x and y. */

55

PES

»

o)

posi

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

8.3.12 Bitwise Inclusive OR Operator [ISO §6.3.12, ANSI §3.3.12]
Constraints

Revise:

Each of the operands shall have integral or parallel integral type.

Examples :

shape [20][20]S;
int:S x, y;

Xzl ¥ /* Denotes a parallel int of shape S whose
value at each position is the result of
the | operator applied to the values at the
corresponding positions of x and y. */

3.3.13 Logical AND Operator [ISO §6.3.13, ANSI §3.3.13]
Constraints

Revise:

Each of the operands shall have parallel or nonparallel scalar type.
Semantics

Add:

If one of the operands is parallel, after the normal promotions have been performed (see
§3.2.3), the first operand (LHS) is evaluated to determine a narrowed context for evaluating
the second operand (RHS), and the second operand is evaluated only in the positions
indicated by this context. That is, the active positions in which the LHS evaluates to zero are
made inactive for evaluating the RHS. The result is a parallel int which is 1 in those
positions for which the values in the corresponding active positions of both the LHS and RHS
are nonzero, and 0 in all other active positions.

Examples

shape [10]([10][100]S;
int:S x, y;

x && y: /* Denotes a parallel int of shape S whose
value at each position is the result (0 or 1)
of applying the && operator to the values
at the corresponding positions of x and y.
Note that the second operand is only-*
evaluated in those active positions for which
the first operand is nonzero. */

56

POy

»

to

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3.J11/94-080
Version 1.6 WG14/N395

3.3.14 Logical OR Operator [ISO §6.3.14, ANSI §3.3.14]
Constraints

Revise:

Each of the operands s}lall have parallel or nonparallel scalar type.
Semantics

Add:

If one of the operands is parallel, after the normal promotions have been performed (see
§3.2.3), the first operand (LHS) is evaluated to determine a narrowed context for evaluating
the second operand (RHS), and the second operand is evaluated only in the positions
indicated by this context. That is, the active positions in which the LHS evaluates to one are
made inactive for evaluating the RHS. The result is a parallel value which is 0 in those
active positions for which the values in the corresponding positions of both the LHS and RHS
are 0, and 1 in all other active positions.

Examples

shape [10][10][100]S:
int:S x, y;

x|l y; /* Denotes a parallel int of shape S whose
value at each position is the result (0 or 1)
of applying the || operator to the values at

the corresponding positions of x and y.

Note that the second operand is only
evaluated in those active positions for which
the first operand is zero. */

3.3.15 Conditional Operator [ISO §6.3.15, ANSI §3.3.15]
Constraints
Revise:

The first operand shall have nonparallel scalar type or parallel type with scalar element

type.

If both of the second and third operands are of parallel type, they shall be of compatible
parallel types.

One of the following shall hold for the second and third operands or, if the second or third

operands are of parallel type, the following shall hold for the element types of the second and
third operands: :

57 b

oy
)
o

10

15

20

25

30

35

40

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Semantics
Add:

If the first operand has parallel type, the context of the shape of the first operand is
constrained by the expression denoting the first operand for the purpose of evaluating the
second and third operands. That is, the behavior is as if the second and third operands are
evaluated in the scope of a where statement whose mask expression is the first operand.
For example,

opndl ? opnd2 : opnd3
behaves as if evaluated with the same contextualization of the following:

where (opndl)
opnd2;

else
opnd3;

Note that both opnd2 and opnd3 are evaluated in this case, whereas if opnd1 is
nonparallel, only one of opnd2 and opnd3 is evaluated.

Examples

shape [100]s:

int:S x;

int vy, 2;

i L SN R i IS 3 /* Denotes a parallel int whose value at
each position is the absolute value of
the corresponding value of x. Note that
both the true and false parallel
operands will be evaluated at each
position. */

x <y ?2x ;2 /* Denotes a parallel int whose value at
each position is the value at the
corresponding position of x, if that
value is .less than y, and otherwise it
is the value of z. */

58

o A

)
Y .

10

15

20

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.3.16 Assignment Operators [ISO §6.3.1, ANSI §3.3.16]
Syntax
Revi indi I
assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
assignment-operator: one of
= *= /= 3= $%= = -
<<= >>= &= A= |= <?= >?=
Constraints
Add:

The assignment operators =, %=, $%=, <<=, and >>= shall not be used with a left operand
that is nonparallel and a right operand that is parallel.

59

owd

-}

(SF

Y

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

8.3.16.1 Simple assignment [ISO §6.3.16.1, ANSI §3.3.16.1]
Constraints

Revi I ’ : l Tte] ohiecis:
One of the following shall hold:

e the left operand is of parallel type T1 and the right operand is of nonparallel type T2, such
that an operand having the element type of TI can be the left operand of simple
assignment where the right operand is of type T2;

e the left operand is of parallel type T'1 and the right operand is of parallel type T2 such
that T1 and T2 have compatible shapes and such that an operand having the element type
of T1 can be the left operand of simple assignment where the right operand has the
element type of T2;

¢ the left operand is the identifier of a shape variable which is fully unspecified or partially
specified when declared, and the right operand has compatible shape type;

A shape variable shall not be assighed a new shape value after it has been used in declaring
objects of parallel type.

Semantics
Add:

If the left operand is of parallel type and the right operand is of nonparallel type, the value of
the right operand is replicated to form a parallel value before assignment, including any
necessary type conversions.

If the left operand is of parallel type and the right operand is of parallel type, the objeét
denoted by the left operand is assigned elementally by the right operand, including any
necessary type conversions.

If the left operand is a parallel type of shape void, which can only happen if the left operand
is a parameter in a function prototype specification, the left operand assumes the shape of
the right operand.

If the left operand is the identifier of a shape variable, and the right operand denotes a shape
object of compatible type, the left operand is replaced by the value denoted by the right
operand. The type of the left operand becomes the composite type of the two operands, and
the value of the shape object becomes fully unassigned, partially assigned, or fully assigned,
according to the type of the right operand. If the right operand is not shape compatible with
the left operand, the behavior is undefined.

Note that assignment of shapes involves copying of the shape value.

60 <

ead

I

10

15

20

25

30

35

40

45

DPCE Technical Report

Version 1.6

Examples

shape [10]S,
int:S x;
float S+ ys
typedef struct { int a, b; float f; } stype:
stype z = { 5,

stype:S w;
x = 10;
w = Z;
zZ = W
y X7
v =S;
V= T%
v = U;
T = 8S;
U =8S;
T = U;
S =T;

(1o, vs

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

8, 2:5 13

X3J11/94-080
WG14/N395

10 is first converted to a parallel int */

Each element of w is assigned a copy of z */

Constraint violation */

Assigns elements of y from corresponding
elements of x, converting ints to floats */

Composite type
Composite type
Composite type
Composite type

is
is
is
is

type
type
type
type

of

of T
of U

of

S

S

*7
Ll
i3/ 4
*/

Constraint violation, incompatible shapes */
Constraint violation, incompatible shapes */
Constraint violation, can't assign a shape
variable that is fully specified when

declared */

3.3.16.2 Compound assignment [ISO §6.3.16.2, ANSI §3.3.16.2]

Constraints

Revise:

For the operators += and -= only, either the left operand shall be a pointer or a parallel
pointer to an object type, and the right shall have integral or parallel integral type; or the left
operand shall have qualified or unqualified, parallel or nonparallel arithmetic type, and the
right shall have parallel or nonparallel arithmetic type.

For the other operators, each operand shall have parallel or nonparallel arithmetic type

consistent with those allowed by the corresponding binary operator.

Recall that the %=, $%=, <<=, and >>= operators were previously constrained in §3.3.16.

61

-

v
q

10

15

20

25

30

35

40

45

50

55

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Semantics
Add:

When the left operand is of nonparallel scalar type and the right operand is of parallel type,
the operation is a scalar reduction assignment. The value of the left operand is included in
the reduction value computation (see §3.3.3.7). That is, the behavior of :

LHS op= RHS
is equivalent to:
LHS op= op= RHS

When the left operand is of parallel type and the right operand is of compatible parallel type,
a parallel reduction assignment is performed. If the left operand is parallel indexed and
specifies collisions (two positions of the parallel lvalue designate the same object), then
values with the same destination are combined with each other and with the value at the
destination using the associated operator. If there are no collisions, then a compound
assignment is performed elementally on the values at the corresponding positions of the
operands.

Examples

shape [10][20]S:;
int:S'x, Vv;
int:S *p2Pi;
int:S *:S Pp2Pi;
.int result;
shape [10]T;

int ai[5];

int:T aP([5];

result += x; /* Equivalent to result += +=x */
result -= x; . /* Equivalent to result += -=x */
result <?= x; /* Equivalent to result <?= <?= x */
p2Pi += 1; /* Increments pointer by 1 */

Pp2Pi += 1; '/* Increments all elements of parallel

pointer by 1*/

Pp2Pi += x; /* Increments all elements by ints at
corresponding positions of x */

v *= x; /* Equivalent to y =y * x */

[x]y += x; /* Equivalent to the following loop, in
the absence of collisions */
{ant a, j"
for (i=0; i<10; i++)
for (j=0:; 3j<20:; j++)
([i1[3)1=x]y += [i][3]1=x;

62

4. K
q
8

'3

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 ; WG14/N395

ai[pcoord(T,0 % 5] += x;
/* ai[0] <-- ai[0] + [0]x + [S]x;
ai[l] <-- ai[l] + [l]x + [6]x;
}éﬁere are collisions) */
aP[pcoord(T,0 % 5] += x;
/* [0]laP[0] <-- [0]aP[0] + [O0]x;
[1]aP[1l] <-- [1l]aP[l] + [1]x;

(there are no collisions) */

result %= x; /* Constraint violation */
3.3.17 Comma Operator [ISO §6.3.17, ANSI §3.3.17]
Examples

shape [10]1([10]S:;
int:S x;

x++, x; /* Denotes the parallel int value represented by
x after it has been postincremented. */

3.4 CONSTANT EXPRESSIONS [ISO §6.4, ANSI §3.4]

Semantics
Add for parallel constants:

Parallel constants are introduced implicitly by use of nonparallel constant expressions in
binary or ternary operations involving a parallel operand; in this case the nonparallel
constant is promoted to a parallel constant by replicating the constant value.

Parallel constants may also be introduced explicitly by the use of cast expressions where the
operand of the cast is a nonparallel constant.

A parallel address constant is an address constant designating a parallel object.
Examples

shape [10] [10]S:

float:S x;

static int:S y:

int:S *p = &y /* Parallel address constant */

x =1.0; /* Constant 1.0 is replicated to form
parallel double of shape S */

x = (float:S)1.0; /* Explicit cast to parallel float */

63

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.5 DECLARATIONS (ISO §6.5, ANSI §3.5]
Syntax

Revi indicated:

declaration:
declaration-specifiers init-declarator-listopt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier shape-specifieropt declaration-specifiersopt
type-qualifier declaration-specifiersopt

shape-specifier:
: shape-expression

shape-expression:
(expression)
identifier
physical
void

Constraints
Add:

In shape expressions of the form “(expression)” used in file scope declarations, the expression
shall be a constant-expression.

Shape expressions of the form “void” shall be used only in function prototypes or in pointer

declarations.

The declaration-specifiers portion of a declaration shall contain at most one shape-specifier
(see also §3.5.4.4). '

A void shape designator can be used to specify a generic shape for parameter and return
value types of a function prototype.

A type:void * type specifier can be used to specify a pointer to a parallel type of
generic shape. A void:void * type specifier can be used to specify a pointer to a
generic parallel type.

Semantics

Add:

*

If the specification of an array type includes any shape specifiers, the eiement type is so-
specified, not the array type.

This"czlan only happen through the use of a typede£. The resulting type is an array of
parallel.

64

10

15

20

25

30

35

40

DPCE Technical Report
Version 1.6

Examples
shape [10]S:
typedef:S a;
typedef int:S Pi;
extern int:é b;

static int:physical c;

auto float:S d;
register int:S e;
volatile:S £

int: (*shapeof (e)) g-

short:S int:S h;
int:void £1();
int:void *p2Pigen:
void:void *p2Pgen;

typedef int atypelS5]:

atype:S x;

int:S y[5];

/*

/*

/*

/*

/t

/*

/*

/*
/*

/*

65

X3J11/94-080
WG14/N395

Syntax error */
Type Pi is a parallel int */
b is an extern parallel int */

c is a static parallel int of
physical shape */

d is an auto parallel float */
e is a parallel int */

Syntax error */

g is a parallel int */

Constraint violation, multiple
shape specifiers */

fl returns a parallel int of
unspecified shape */

p2Pigen is a pointer to parallel
int of generic shape */

p2Pgen is a pointer to a generic
parallel type */

atype is an array of int */

x is an array of 5 parallel ints
of shape S */

y is also an array of 5 parallel
ints of shape S */

- A

D)
b

-

wa

10

15

20

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.5.2 Type Specifiers [ISO §6.5.2, ANSI §3.5.2]
Syntax
Add:
type-specifier:
;}wpe-type-épeciﬁer

shape-type-specifier:
shape

Constraints

Add to the type specifier sets:
¢ shape-type-specifier

Add:

A shape type specifier shall only be used in a declaration of a shape object (see §3.5.4.4).

66

5

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.5.4 Declarators [ISO §6.5.4, ANSI §3.5.4]
Syntax
Revi ndicated:

declarator:
shape-dimension-and-layoutopt pointeropt direct-declarator

direct-declarator:

direct-declarator (parameter-type-list) function-qualifieropt
function-qualifier:

elemental

nodal
pointer:

* type-qualifier-listopt shape-specifieropt pointer-qualifieropt

* type-qualifier-listopt shape-specifieropt pointer-qualifieropt pointer

pointer-qualifier:
elemental

Conétraints

A shape-dimension-and-layout shall only be used in a shape declarator (see §3.5.4.4).

67

‘A
()

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.5.4.1 Pointer declarators [ISO §6.5.4.1, ANSI §3.5.4.1]
Constraints
\dd Hol ot . Ilel. 1ol el functi .
If, in the declaration “T D1,” D1 has the form
* type-qualiﬁe;'-listopt shape-specifierD
and D contains a function declarator, then the corresponding function type must be qualified
as elemental. If T or D contains pointer declarators containing more than one shape
specifier, then all the shape specifiers shall have compatible shape types.
Semantics
A declaration of the form “T D1” such that T is a parallel type and D1 has the form
* type-qualifier-listopt pointer-qualifieropt D
declares a pointer to parallel.
A declaration of the form “T D1” such that T is a nonparallel type and D1 has the form
* type-qualifier-listopt shape-specifier pointer-qualifieropt D
declares a parallel pointer to nonparallel (see §3.5.4.5).
A declaration of the form “T D1” such that T is a parallel type and D1 has the form
* type-qualifier-listopt shape-specifier pointer-qualifier opt D
declares a parallel pointer to parallel (see §3.5.4.5).
If, in the delclaration “r D1,” D1 has the form
* type-qualifier-listopt shape-specifier pointer-qualifieropt D

and T or D contains pointer declarators with shape specifiers, then all the shape specxﬁers
shall denote the same shape, or the behavior is undefined.

Examples

shape [10]S, (20]T:

int:S * p2Pi; /* p2Pi is a pointer to parallel int */

int *:S Pp2i; /* Pp2i is a parallel pointer to fnt */

int:S *:S Pp2Pi; /* Pp2Pi is a parallel pointer to parallel
int */

int *:S *:S Pp2Pp2i; /* Pp2Pp2i is a parallel pointer to a

parallel pointer to int */

68

vk
-~)
[V PN

10

15

20

25

30

35

40

45

50

55

DPCE Technical Report : X3J11/94-080

Version 1.6 WG14/N395
int *:S *:T ptrl; /* Constraint violation, incompatible
shapes */
Add for elemental pointers:

If a pointer declaration specifies the type “elemental-qualified pointer to 7" and the pointer
type is parallel, either directly or indirectly, then T also is considered to be a parallel type of
the same shape as the pointer type. Cases where the poirter type is considered to be
indirectly parallel are illustrated below.

If T has a shape specifier, then the elemental pointer qualifier adds no additional meaning
to the declaration.

The elemental pointer qualifier only has meaning when determining the type of the
enclosing declaration. In particular, it adds no meaning with regard to operations upon
values.

The elemental pointer qualifier is removed from the type when a variable, parameter,
etc., is declared. It can only remain in a type for a typedef name or a structure member.
However when an object is declared using the typede£ name or the structure type, the
elemental pointer qualifier is removed from the type.

Examples

shape [10]S;
typedef int * elemental PTR;
struct sl {
PTR ml;
int *m2;
};

int *:S elemental pl; /* Pointer is directly parallel so pl is
parallel pointer to parallel int */

int * elemental *:S p2; /* Inner pointer is directly parallel so
outer pointer indirectly becomes
parallel and therefore p2 is parallel
pointer to parallel pointer to parallel

int */

PTR:S p3; /* p3 is parallel pointer to parallel
int */

PTR p4; /* p4 is pointer to int */

struct sl:S Ps; /* ml is indirectly parallel because

enclosing struct was declared parallel.
Therefore Ps.ml is parallel pointer to
parallel int. Note that Ps.m2 -is

parallel pointer to nonparallel int. */

struct sl s; /* s.ml is pointer to int, s.m2 is pointer
to int */

int:S *:S elemental p5; /* p5 is parallel pointer to parallel; no
additional meaning is added by the
elemental qualifier */

69

“a)
Gt

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

8.5.42 Array declarators [ISO §6.5.4.2, ANSI §3.5.4.2]

Semantics

Add:

An array whose element type is parallel follows the usual semantics of arrays, requiring
(conceptual) contiguity of array elements that allow subscripting and usual pointer
arithmetic to be used interchangeably. However, since the element type is parallel, the
elements of an element of the array are allowed to be discontiguous. This is consistent with
the semantics of parallel objects. (See also §3.3.2.1, §3.3.3.2, and §3.3.6.)

Examples

shape [100][200]S;
int:S array([50];

/* The following evaluates to 1 */
&array[0) == garray[l] + sizeof (arrayl[0]):

3.5.4.3 Function declarators (including prototypes) [ISO §6.5.4.3, ANSI §3.5.4.3]
Constraints

A function declarator qualified with the elemental or nodal qualifiers shall contain a
parameter type list.

A qualified function must provide a prototype specification of its parameters.
Add for elemental functions:

An elemental-qualified function shall not declare parameters of parallel or shape types, nor
shall it return a parallel type.

Add for nodal functions:

A nodal-qualified function shall declare parameters only of the following types:
e parallel t&pe of shape void; or

* pointer to nonp;rallel type; or

* nonparallel type.

Semantics

A function qualified with the elemental qualifier is called an elemental function. (See also
§3.3.2.2, §3.6.6.4, and §3.7.1.)

70

ek

10

15

20

25

30

35

40

45"

50

55

DPCE Technical Report X3J11/94-080

Version 1.6 WG14/N395
Examples
int f1(int) elemental; /* Elemental function returning int */

int *£f2(int) elemental; /* Elemental function returning pointer
to int */

Add for nodal functions:

A function qualified with the nodal qualifier is called a nodal function. (See also §3.3.2.2,
§3.6.6.4, and §3.7.1.)

Examples

shape [1024]S;

int £1(int:S) nodal; /* Nodal function returning int:physical
if called from nonnodal, and an int if
called from nodal */

int:S £2(int:S) nodal; /* Nodal function returning an int:S */
3.5.4.4 Shape declarators [NEW]
Syntax

shape-dimension-and-layout:
shape-dimension-and-layout-specifier shape-dimension-and-layoutopt

shape-dimension-and-layout-specifier:
[expressiongpt 1
[expression block (block-expression)]
[expression scale (scale-expression)]

block-expression:
expression

scale-expression:
expression

Constraints

The expression used to specify the dimensions of a shape shall be an integral expression
having a value greater than zero; if used at file scope or in an extern or static declaration,
the expression shall be a constant integral expression. If any shape-dimension-and-layout-
specifier in a shape-dimension-and-layout specifies a dimension, all the specifiers shall
specify a dimension. g

If at file scope or in an extern or static declaration, block and scale expressions shall be
constant integral expressions. If any shape-dimension-and-layout-specifier includes a block
layout specification, then no other shape-dimension-and-layout-specifier in the same shape-
dimension-and-layout shall include a scale layout specification, and vice versa.

Mixing of block and scale specifiers in a shape declaration is not allowed.

71

[P
-“)
-\{

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Semantics

A shape declarator denotes an object of type shape. As discussed in §3.1.2.5, a shape is a
type whose values consist of the following components: rank, dimensions, context, and
layout. A shape type may be fully unspecified, partially specified, or fully specified,
depending on the rank and dimensions specified.

The block and scale expressions used to specify the layout of a shape shall be nonnegative
integral expressions, and scale expressions shall be greater than zero; otherwise, the
behavior is undefined.

The object denoted by a shape declarator is fully unassigned if its shape type is fully
unspecified; all component values of the shape object are undefined. The object denoted by a
shape declarator is partially assigned if its shape type is partially specified; its rank
component is assigned the rank of the shape type, and all other components are undefined.
The object denoted by a shape declarator is fully assigned if its shape type is fully specified;
its rank, dimensions, and layout components are assigned the rank, dimensions, and layout
specified in the shape type, and its context is assigned a value such that all positions are
initially active.

The rank of a shape is determined from the number of shape-dimension-and-layout-specifier's
given. The dimension in each axis is optionally specified as the expression in a shape-
dimension-and-layout-specifier.

The block and scale specifiers suggest a layout or data distribution for parallel operands
associated with this shape declarator. The block specifier suggests that data is to be
distributed in blocks of the indicated size. The scale specifier suggests that data be
partitioned into maximal blocks with block dimensions proportional to the scale expressions
in the corresponding dimensions; each partition receives the indicated block size, if the shape
is multidimensional; or a single block, if the shape is one-dimensional. Partitions of blocks
are distributed in round-robin fashion to the nodes of the target architecture.

Note: if the number of partitions is not a multiple of the number of nodes, not all nodes
receive an equal number of partitions; if the data size is not a multiple of the determined
block size, not all partitions are necessarily the same size.

A block specifier equal to the dimension in a given axis suggests that no distribution is
desired across that axis of an object.

If no block or scale specifier is given, or if a block specifier is equal to zero, the
implementation determines an appropriate distribution for parallel operands of this shape on
the target architecture.

The implementation is free to use a different layout than what is suggested. However, for
identical layout specifications, an implementation shall use identical layout. (See §4.14.1.2
and §4.14.1.4.)

72

e ’{J
i %

10

15

20

25

30

35

40

DPCE Technical Report ' X3J11/94-080

Version 1.6

Examples

shape

shape

shape
shape

shape

shape

shape

shape

shape

WG14/N395

[100 block (10)]S:;

/* Suggests objects of shape S are to be distributed
in blocks of 10 elements per partition; each
partition will have blocks of 10 contiguous
elements. */

[100 block (100)]T:
/* Suggests objects of shape T are not to be
distributed; all elements are in the same
partition */

[100 block (0)]U;
[100] v;
/* Suggests objects of shape U or V are to be
distributed as determined by the implementation */

[100 scale (1)]1Ww;
/* Suggests objects of ‘shape W are to be
distributed with 1 block per partition where
the implementation determines the block size */

(100 block (10)]([100 block (20)1X;
/* Suggests objects of shape X are to be
distributed in blocks of 10x20 elements */

[100 scale (1)][100 scale (2)]Y:

/* Suggests objects of shape Y are to be distributed
in blocks with kx2k elements; k will be
approximately sqrt((100x100)/2n) where n is the
number of partitions */

[n block (m)]Z;
/* Constraint violation if at file scope */

[0 scale(0)][10 block (-10)]2z;
/* Constraint violations: dimension and scale
expressions must be greater than 0, and can't mix
block and scale specifiers in a declaration */

73

)

=)

10

15

20

25

30

35

- 40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

38.5.4.5 Parallel object declarators [NEW]
Constraints

The element type of a parallel object declarator shall not be, directly or indirectly, another
parallel type.

The element type of a parallel object declarator shall not be, directly or indirectly, a structure
or union type that has'a member that has parallel type or a member that has shape type.

The element type of a parallel object declarator shall not be, directly or indirectly, a shape
type.
Each shape-specifier in the declaration shall be an lvalue of type shape.
If an expression is used in the shape-specifier, the expression must denote an lvalue of
type shape. A shape-valued expression must denote an object in addressable memory to
be used in a parallel object declaration.
Semantics
A declaration that includes a shape-specifier is a parallel object declarator. Parallel object
declarators denote parallel objects—i.e., variables of parallel type. If the shape-specifier is a
part of a pointer, the parallel object is a parallel pointer, a parallel object whose element type
is a pointer type (see §3.5.4.2). :

If the shape object denoted by the shape-specifier is not fully assigned when the parallel
object declarator is declared, the behavior is undefined.

Examples

shape [100][4][25]S;

shape []T;

typedef int:S parint_t;

shape £();

int:S x; /* x is a parallel int */

int *:S Pp2i; /* Pp2i is a parallel pointer to int */
parint_t:S y; /* Constraint violation; element type is

parallel type */
struct { parint_t e; }:S w;
/* Constraint violation; element type is
struct with parallel member */

int: (£()) z:; /* Constraint violation, f returns a shape
value, not a shape object. */

Znt T iz /* Undefined behavior, T is not fully
assigned */

74

—

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.5.5 Type names [ISO §6.5.5, ANSI §3.5.5]

Syntax
The syntax for abstract declarators was not extended to allow a shape-specifier as with
declarators, due to ambiguities that would otherwise be introduced in recognizing (optional)
expressions in square brackets []. These could be either a shape dimension specifier or

an array dimension specifier. Therefore, abstract declarators for shape types or arrays of
shape types must first define the shape type with a typede£.

Semantics
Add:

In a direct-abstract-declarator containing square brackets [] the abstract declarator being
constructed designates an array type and not a shape type.

Examples

typedef shape [] shape_ tl:
typedef shape [10] shape_t2;

void £1 (shape): /* Abstract declarator of fully
unspecified shape type */

void f£2(shape []): /* Abstract declarator of type array of
fully unspecified shape type */

void £3(shape_tl1 []) /* Abstract declarator of type array of
partially specified shape type */

void f4 (shape_t2 []) /* Abstract declarator of type array of
fully specified shape type */

void £5(int:void):; /* Abstract declarator of type parallel
int of void shape */

void f6(int:void [1): /* Abstract declarator of type array of
parallel int of void shape */

void £7(int *:void); /* Abstract declarator of type parallel
having element type pointer to int and
void shape */

void £8(int:void *); /* Abstract declarator of type pointer to
parallel int of void shape */

75

high

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.5.7 Imnitialization [ISO §6.5.7, ANSI §3.5.7]
Constraints

Revi i

All the expressions in an initializer for an object or parallel object that has static storage
duration, or in an initializer list for an object or parallel object that has aggregate or union
type shall be constant expressions.

Semantics
r e rators:

An initializer for a parallel object declarator specifies the initial value of every element of the
parallel object. The initializer value is replicated and assigned to the element object values
at each position.

An initializer for an array whose element type is a parallel type initializes each element of
the parallel object with the initializer value specified for the corresponding array element;
that is, each array element is initialized by replicating the corresponding (nonparallel) value
in the initializer list.

Examples
shape [200]sS:;
int:S x = 10; /* Initializes all int elements to 10 */

int:S a(5] = { 9, 4, 6, 2, 5 }:
/* Initializes a[0] to be a parallel int
whose values are all 9, a[l] to be
parallel int whose values are all 4,
etc. */

struct { int i; float £; }:S ss = { 10, 1.5};
/* Initializes all elements to have member
i initialized to 10 and member £
initialized to 1.5 */

union { int i; float £; }:Suu = {1 };

/* Initializes member i of all elements
to be 1 */

76

oA

-

«s

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.6 STATEMENTS [ISO §6.6, ANSI §3.6]
Syntax
Revi TR
statement:
;;)ntextulizatwn-statement
3.6.4 Selection statements [ISO §6.6.4, ANSI §3.6.4]
Constraints

The controlling expression of an if or switch statement shall be of nonparallel type. The
expression of each case label shall be of nonparallel type.

3.6.5 Iteration statements [ISO §6.6.5, ANSI §3.6.5]

ot ey sy

Constraints

The controlling expression of an iteration statement shall have nonparallel scalar type.
8.6.5.3 The for statement [ISO §6.6.5.3, ANSI §3.6.5.3]

Both expression-1 and expression-3 are allowed to have parallel type.

77

-n

Co

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.6.6 Jump statements [ISO §6.6.6, ANSI §3.6.6]

Semantics

\Jd for clarification:

If a jump statement is used to leave the nested context of a where or everywhere statement,
the contextualization at the destination is restored for all shapes that were constrained by
the contextualization statement(s) exited to the contextualization of the destination.

If a jump statement is used to enter the nested statement part of a contextualization
statement or to enter a block declaring a parallel variable or shape, the behavior is
implementation-defined.

3.6.6.4 The return statement [ISO §6.6.6.4, ANSI §3.6.6.4]

Semantics
Add for elemental functions:

When an elemental function that is executed nonelementally executes a return statement,
the semantics are the same as a return for a nonelemental function. When an elemental
function that is executed elementally executes a return to an elemental caller, the semantics
are the same as a return for a nonelemental function.

An elemental function that is executed elementally executes as if the function was called
once per active position for the established shape of its parallel argument(s) (see §3.3.2.2).
When a return statement with an expression is executed at a position, and the caller is a
nonelemental function, the value of the expression is assigned to that position in a parallel
return value. If the element type of the parallel return value is different from the type of the
return expression, then the expression value is converted as if by assignment. Control is not
returned to the caller until all active positions have executed a return statement.

78

‘we A

[T

10

15

20

—~

DPCE Technical Report ' X3J11/94-080
Version 1.6 g ‘ WG14/N395

Examples

typedef struct coord { double s, y; } COORD;

double distance (COORD ptl, COORD pt2) elemental
{
double x delta, y delta;

x_delta = ptl.x - pt2.x;

y_delta = ptl.y - pt2.y;

return sqrt (x_delta*x_delta + y_delta*y delta):
}

main ()

{
COORD a, b, sresult:
COORD:S ¢, d, presult;

sresult distance(a,b): /* Executes in nonparallel mode */

presult distance(c,d): /* Executes in parallel mode,

elementally */

79

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Add for nodal functions:

When a nodal function that is declared to return a nonparallel value is returning to a
nonnodal execution environment, then a parallel value of physical shape is returned. Each
thread executing the nodal function contributes one element of the return value.

When a nodal function that is declared to return a nonparallel value is returning to a nodal
execution environment, then a nonparallel value is returned in the usual manner.

For a nodal function that is declared to return a parallel value, the shape of the return
expression shall be a shape that was created when passing an argument to the nodal
function (see §3.3.2.2); otherwise the behavior is undefined. If S is the shape of the return
expression and T is the shape of the argument that caused S to be created, then the shape of
the parallel value returned to the caller will be T. Note that if returning to a nodal
environment, S will be identical to T. The correspondence of positions of the shape of the
return expression and positions in the shape of the value returned to the caller is
implementation-defined, but the mapping used will be the inverse of the mapping used when
passing arguments of the latter shape to a nodal function.

In all cases, when a nodal function executes a return statement with an expression, the
expression value is converted as if by assignment if the element type of the return expression
is different than the element type of the declared return type.

In addition, if one or more of the threads executes a return statement without an
expression, and the value of the function call is used by the caller, the behavior is undefined.

This is the multithreaded version of the single-threaded semantics for C.

The threads executing a nodal function synchronize upon return to a nonnodal execution
environment: control is not returned to the caller until all threads have executed a return.

IR S

80

a

(@p]

DPCE Technical Report X3J11/94-080
‘Version 1.6 WG14/N395

Examples

10

15

20

25

30

35

40

int [10]S;

int [100]T;

int:S x,y,2:

int:T w;

int:physical one_per node;

int:void nodal_add(int:void a, int:void b) nodal
{
return(a + b); /* Shape of return value as seen by caller
will be the same as the shape of the
two arguments, which in this case must
be the same */
}

int:physical physical_increment (int a) nodal
{ s
return(a + 1); /* Caller will pass an int:physical and
get an int:physical in return */

}

int:void nodal_bug(int:void a) nodal

{
shape [64]1S2;

return((int:S2)19); /* Undefined behavior: shape of return
value must be derived from shape of a
parameter */

}

main ()

{
x = nodal_add(y,z); /* OK, because x, y, z have same shape */
w = nodal_add(y,z): /* Undefined behavior, w not of same shape

as y, z */

one_per_node = physical_increment (one_per_node);
/* OK */

nodal_bug (w) ; /* Undefined behavior */
}

81

=4

10

15

20

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.6.7 Contextualization [NEW]
Syntax

contextualization-statement:
where (mask-expression) statement
where (mask-expression) statement else statement
everywhere (shape-expression) statement

Semantics

A contextualization statement modifies the context of a shape for the duration of the
substatement(s) of the statement. The context component of the shape is restored to its
previous value at the end of the substatement. Note that context-modifying statements may
be nested, and the effects on the contextualization are recursively defined for the nested
statements.

All parallel values have an associated shape and this shape contains its current context.
Therefore, a contextualization statement first modifies the context of the shape of its mask
expression, and then a function in the substatement is called. If this function accesses a
value of the same shape as the mask expression, then the modified context will be used
when evaluating expressions of this shape. ' :

82

—~—d

Ccc

10

15

20

25

30

35

40

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

8.6.7.1 The where statement [NEW]
Constraints
The mask expression shall evaluate to a parallel scalar value of shape S.

The mask expression must be a parallél type whose element type is a scalar, which is
either an arithmetic type or a pointer type.

Semantics

The context of shape S will be constrained by the value of the mask expression for the
duration of the first substatement, and if there is an else and a second substatement, the
context of shape S will be constrained by the value of the logical complement of the value of
the mask expression for the duration of the second substatement. The mask expression (or
its complement) constrains the context by further limiting what positions are active: it can
only make active positions inactive for the duration of the substatement(s); it cannot make
inactive positions active.

Each parallel operand of shape S accessed within the substatement(s) of the where
statement will have the context narrowed by the mask expression. Parallel operands that
are not of shape S within the substatement(s) are not affected by the narrowed context.

Examples

shape [100]S, [10]([10]T;
int:S x, y, mask;
int:T z;

where (mask > 0) {

x++; /* Affected by the narrowed context */
y++; /* Affected by the narrowed context */
z++; /* Not affected by the narrowed context */
}
else {
x++; /* Affected by the narrowed context */
y++; /* Affected by the narrowed context */
z=-=; /* Not affected by the narrowed context */
) .
83

o
Y

10

15

20

25

DPCE Technical Report X3J11/94-080
Version 1.6 _ WG14/N395

3.6.72 The everywhere statement [NEW]
Constraints

The shape expression shall evaluate to a shape S.
Semantics

The context of the designated shape S will be as if assigned a parallel value of 1 for the
duration of the substatement. This will widen the context so that all positions are active.

Each parallel operand of shape S within the substatement of the everywhere statement will
have a widened context in which all positions are active. Parallel operands that are not of
shape S are not affected by the widened context. »

Examples
shape [100]S, [10]([10]T;
int:S x, y, mask;

int:T z;

everywhere (S) {

x++; _ /* Affected by the widened context */
y++; /* Affected by the widened context */
zZ==; /* Not affected by the widened context */
}
84 . 3

|

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

3.7 EXTERNAL DEFINITIONS (ISO §6.7, ANSI §3.7]
8.7.1 Function Definitions [ISO §6.7.1, ANSI §3.7.1]
Constraints

Add for elemental functions:

An elemental function shall not contain any variable declarations of parallel or shape types,
or types derived from parallel or shape types.

An elemental function shall not contain a where or everywhere statement.

An elemental function shall not contain reduction or parallel-indexing operations.
An elemental function shall call only elemental functions.

An elemental function shall not reference a parallel variable with file scope.

A variable declared within an elemental function shall not have static storage class.
Add for nodal functions:

A nodal function shall call only nodal functions and elemental functions.

A nodal function shall not reference any identifier with file scope, except nodal or elemental
functions, and any of the functions listed in §4.14.

Semantics
Add for elemental functions:

An elemental function that is executed nonelementally has the same semantics as a
nonelemental function.

An elemental function that is executed elementally executes as if the function was called
once per active position of the shape of its parallel argument(s). Assignment of arguments to
parameters also occurs on a per active position basis, with conversion, if necessary, between
the element type of a parallel argument and the type of the corresponding parameter.

If an elemental function accesses a nonparallel object that was not defined within an
elemental function, the behavior is undefined.

Since an elemental function executing elementally executes as if called once per active
position, pointer dereferences have special position-oriented semantics. When the function is
being executed as if for a particular active position, a dereference of a pointer that was
created outside the elemental function as a “parallel pointer to parallel” accesses only the
object in the corresponding position of the pointer target.

Sol

po .

85 3

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Examples

10

15

20

25

30

35

40

45

50

55

/* Linked list node for use either in parallel or
nonparallel setting */

#include <dpce.h>
typedef struct node * elemental LINK;

struct node {
int count;
LINK next; /* Pointer to either parallel or
nonparallel struct node */

};

/* Elemental function to build a linked list:
n linked nodes are built
count fields are initialized from values argument
*/
struct node *build(int n, int values[]) elemental
{

/* Automatic "flow through" for elemental function locals:
in elemental function everything is parallel or
everything is nonparallel

=

struct node *last = NULL, *new;

int i;

for (i = n=1; i >= 0; i--) {
new = (struct node*) malloc(sizeof (struct node)):
new->count = values([i];
new->next = last;
last = new;
}
return last;

}

/* Elemental function to sum "count" fields of a "struct
node"™ list

*x/

int sum(struct node *list) elemental

{

int ret = 0;

while (list != NULL) {
ret += list->count;
list = list->next;

}

return ret;

}

shape [100]S;
int n;

int values[10];

int:S many values[10];
int:S many n;

86

10

15

20

25

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

LINK head; /* Nonparallel pointer to nonparallel

struct node */

LINK:S many_head; /* Parallel pointer to parallel struct

_node */

main ()

{

/* Call to init values, many_values, many n */
init_stuff();

head = build(n,values); /* nonparallel */
many head = build(many_n,many_values); /* parallel */

printf ("sum of head is %d\n", sum(head));

printf ("sum of many_head is %d\n", +=(sum(many_head)));

printf ("sum of just [4]many_head is %d\n", [4] (sum(many_head)));
/*'Or perhaps more efficiently */

where (pcoord(S,0) == 4) {

printf ("sum of just [4]many_head is %d\n",+=(sum(many_head)));
}

87 &

PN

il

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 ‘ WG14/N395

Add for nodal functions:
The body of a nodal function executes in a single-node environment (see §3.3.2.2).

If a pointer to a nonparallel object created in a nonnodal execution environment is
dereferenced in a nodal environment, the behavior is undefined.

Examples

struct x {
int *p; /* p is a pointer to nonparallel */

}:

struct x a;
int n;

void nodal_f (struct x param) nodal

{
struct x local;

local = param;

local.p = 19; / Undefined behavior if value of a
pointer to nonparallel originated in
nonnodal environment; therefore can't
dereference it in nodal environment */

b

void another_nodal_f (void) nodal
{

struct x local;

int i;

local.p = &i;
nodal_f (local); /* OK, the pointer value in local.p
originated in nodal environment */
}

main ()
{
a.p = &n;
nodal_f(a); /* Argument will be promoted to struct
: x:physical but undefined behavior will
result when nodal_f dereferences the
member */
another_nodal_£(); /* OK */

88

& A

ol

[T

—

10

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Inside nodal functions, pointer values that were created in a nonnodal execution
environment as “pointer to parallel” have special position-oriented semantics. All pointer
values accessed, directly or indirectly, for a parameter value derived for a particular position
reference only objects in that position of the pointer target.

Since nodal functions may not reference identifiers with file scope except for nodal and
elemental functions, all pointer values that were created in a nonnodal environment may
only be accessed via a data value passed as an argument to the nodal function that caused
nodal execution to begin. All values of arguments to a nodal function are derived for a
particular position of a particular shape. Therefore parameter values also have this
association with positions of shapes.

89

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

Examples

/* Using'a nodal function to implement the

Sieve of Eratosthenes */

#define N 4800000

typedef unsigned char BOOL;

shape [N scale (1)] natural;

void StrikeOut (int local_dim;

}

BOOL *local_primes([],
BOOL *local_activel[],
int local_coords[],
int current_prime

) nodal

int lowbound = local_coords[0];
int offset = lowbound % current_prime;
int i;

/* Where is the first number that is a multiple of the
current prime? */

if (offset == 0) i = 0;

else i = current_prime - offset;

/* Stride through to knock out multiples of current prime */
for (; i < local_dim; i += current_prime) {
*local_primes[i] 0:
*local_active[i] 0;
}

main ()

{

/* Each position of prime represents itself and is to be
evaluated for primality. The algorithm requires each
node to have a single contiguous block of numbers. */

int next_prime = 2;
BOOL:natural active;
BOOL:natural prime;

where (pcoord(natural,0) < 2)
prime = active = 0;
else where (pcoord(natural,0) == 2) {
prime = 1;
active = 0;
}
else
prime = active = 1;

90

.J:
(wp)

DPCE Technical Report ' X3J11/94-080
Version 1.6 WG14/N395

while (|= active)
where (active) {

/* Could strike out nonprimes by testing all active
5 elements using %, but nodal function can apply more
efficient method exploiting contiguous
distribution. Casts are needed on first two
parameters to cause pointers to each active prime
to -be generated. */
10
StrikeOut (nodepositionsof (natural),
(BOOL:natural *:natural) &prime,
(BOOL:natural *:natural) &active,
pcoord(natural,0),
15 next_prime) ;

where (prime)
next_prime = (<?= pcoord(natural,0));

20 where (next_prime == pcoord(natural,0))
active = 0;

}

printf ("There are %d primes less than %d\n",
25 (+= prime), N);

auly

o
n\i

10

15

20

25

30

35

40

45

50

DPCE Technical Report ‘ X3J11/94-080
Version 1.6 WG14/N395

4. LIBRARY (S0 §7, ANSI §4]

4.1 INTRODUCTION [iso §7.1, ANSI §4.1]
4.1.2 Standard Headers [ISO §7.1.2, ANSI §4.1.2]
Add to standard headers:

<dpce.h>

This header file defines the predefined shape identifier physical and declares new functions
that are available for implementations supporting DPCE. In addition, it redeclares specific
functions declared in <math.h>, <stdlib.h>, and <string.h> to be elemental functions; if
these header files are also included, the correct composite type will be formed for these
functions for DPCE implementations (see §3.1.2.6). This header file must be included by all
translation units that use DPCE.

4.1.6 Use of Library Functions [ISO §7.1.7, ANSI §4.1.6]

There is one exception to the rule that library functions may be declared without the use of
their associated header. If a translation unit declares DPCE functions without first
including <dpce.h>, its behavior is undefined.

4.14 DATA PARALLEL UTILITIES <dpce.h> [NEW]

The header <dpce.h> defines the predefined shape identifier physical and the following
types, and declares the functions specified below. Note: all the functions declared here are
accessible to elemental and nodal functions as described in §3.7.1.

The exact definition of physical is implementation specific. The following definition is a
placeholder for that specific definition, which must be fully specified.

shape []physical;

The types dpce_layout_specs_t and dpce_layout_t are defined as follows:
typedef enum { D?CE_BLOCK, DPCE_SCALE } dpce_layout_specs_t;
typedef struct {

size_t size;
dpce_layout_specs_t spec;
} dpce_layout_t;
4.14.1 General purpose DPCE utilities [NEW]

There are seven functions from <stdlib.h> that are redeclared here as elemental functions.
The intent is that the following functions will behave as they are described in §7.10 of [2]
when operating on nonparallel operands, and will behave elementally when any operand is
parallel.

int abs(int j) elemental;
int atoi(const char *nptr) elemental;
long int atol (const char *nptr) elemental;

92

tY

a

C

74
ot

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

void gsort (void *base, size_t nmemb, size_t size,’
int (*compar) (const void*, const void*) elemental);
void *calloc(size_t nmemb, size_t size) elemental;
void *malloc(size_t size) elemental;
void *realloc (void *ptr, size_t size) elemental;

When executing elementally, the functions malloc, calloc, and realloc return a parallel
pointer to parallel. However, each element of this pointer value has only position-oriented
semantics and may only be used to reference an object in its same position. In particular, if a
single element of the value is converted (for example, via parallel indexing), to a nonparallel
pointer to parallel and the result is dereferenced, then the behavior is undefined. If it is
necessary to create a pointer value with both position-oriented and “global” semantics, then
the functions palloc (§4.14.1.6) and pfree (§4.14.1.8) should be used.

Examples

shape [10]S;

int:S *:S many ptr to_many;
int:S * one_ptr_to_many;
int:S many:;

int:S many2;

one_ptr_to_many = &many;

one_ptr_to_many = 19; / All positions of many receive 19
x /)
many ptr_to_many = &many; /* All positions point to many */

[Slmany_ptr_to_many = &many2; /* Position 5 points to many2 */

many ptr_to_many = 199; / Positions 0-4, 6-9 of many get
199, position 5 gets 1899 */

one_ptr_to_many = [S]many ptr_to_many;
/* Assign pointer to many2 */

1999; /* All positions of many2 get 1999
*7

*one_ptr_ to_many

(int:S *:S)malloc((size_t:S)sizeof(int:S));
/* Each position points to an int in
its own position */

many_ ptr to_many

one_ptr_to _many = [Slmany_ ptr_to_many;
/* Converts position-oriented
parallel pointer to nonparallel
pointer */

one_ptr_to_many = 19999; / Undefined behavior */

There are twelve new general purpose utility functions declared as follows.

4‘x
.y
J

93 3

10

15

20

25

30

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.1 The dimof Function [NEW]
Symnopsis

#include <dpce.h>
int dimof (shape s, int a);

Description

The dimof function extracts the dimension of the shape s in the specified axis a. If the axis
specified by a is outside the range of the rank specified for shape s, or if shape s is partially
assigned or fully unassigned, the behavior is undefined.

Returns

The dimo£ function returns the extracted dimension.

Examples

shape [10][20](30]S;
shape []T, U;
int dim0, diml, dim2;

dim0 = dimo£f(S,0):; /* Assigns dim0 to be 10 */
diml = dimof(S,1); /* Assigns diml to be 20 */
dim2 = dimof(S,2); /* Assigns dim2 to be 30 */
dimof (S,5):; /* Undefined behavior */
dimof (T, 0): /* Undefined behavior */
dimof (U, 0) ; /* Undefined behavior */

94

10

15

20

25

30

35

40

DPCE Technical Report ‘ X3J11/94-080
Version 1.6 WG14/N395

4.14.12 The layoutof Function [NEW]
Synopsis

#include <dpce.h>
dpce_layout_t layoutof (shape s, axis a);

Description

The layoutof function extracts the layout specification for shape s along the designated
axis a. The return value's spec member indicates whether the layout specification is a block
or scale specifier, and its size member indicates the corresponding specification. If shape s
is fully assigned, the returned layout specification is what was specified in the declaration of
the shape type; otherwise it will be a block specification of 0. If the axis specified in a is
outside the range of the rank of shape s, or if the shape s is not fully assigned, the behavior
is undefined. This function gives access to the user-defined layout specification. (See
§3.5.4.4.) :

Returns
The layoutof function returns the extracted layout specification.
Examples

shape [1024 blocl_c (256)1S:

shape T;
dpce_layout_t S_layout;

layoutof(S,1); /* Undefined behavior */
layoutof (T,1):; /* Undefined behavior */
S_layout = layoutof(S,0); /* Extract layout */

/* Use extracted layout */
{ shape [2048 block (layoutof(S,0))]T;

T = S; /* T becomes fully assigned, gets
layout specification from S, so
the next expression evaluates
to 1 */

layoutof (S,0) == layoutof(T,0):;

95

\.I<)

10

15

20

25

30

35

40

45

50

DPCE Technical Report ' X3J11/94-080
Version 1.6 WG14/N395

4.14.1.3 The newshape Function [NEW]
Synopsis

#include <dpce.h>
shape newshape(int rank, int *dimensions,
dpce_layout_t *specs);

Description

The newshape function returns a shape value of the specified rank and dimensions,
initializes the context so that all positions are active, and initializes the layout for the shape
value as specified by the specs argument. The rank argument must be an integer greater
than 0. The dimensions must be an integer array of n values, where n is the specified rank;
each dimension shall be an integer greater than 0. The specs argument is an array of n
dpce_layout_t specifications for the shape value to be returned; each layout specification
shall be a valid dpce_layout_t; otherwise, the behavior is undefined.

Returns
The newshape function returns the initialized shape value.
Examples

shape [10]1S;

shape []T;

shape U;

int ten = 10;

int thousand = 1000;

int dims[3] = {50,50,20};

dpce_layout_t specs_1[]
dpce_layout_t specs_2[]
dpce_layout_t specs_3[]

{ {0, DPCE_BLOCK} };
{10, DPCE_BLOCK} };
{ {50, DPCE_BLOCK},
{50, DPCE_BLOCK},
{20, DPCE_BLOCK} };

[|
—_—

S = newshape(0, 0, 0); /* Undefined */

S = newshape(l, &ten, specs_l);
/* Returns l-dimensional shape value with
default distribution */

T = newshape(l, &thousand, specs_2);
/* Returns l-dimensional shape value with
blocks of 10 elements per partition;
makes T a fully assigned shape */

U = newshape (3, dims, specs_3):;)
/* Returns 3-dimensional shape value with
no distribution; makes U a fully
assigned shape */

96

b

)

to

10

15

20

25

30

35

40

45

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.4 The nodeof Function [NEW]
Synopsis

#include <dpce.h>
int:void nodeof (shape s):

Description
The nodeof function extracts the mapping of positions to nodes from the layout component
of the given shape s, where each node in the implementation has a unique integral

designation. If the shape s is not fully assigned, the behavior is undefined. This function
gives access to the implementation-defined layout for the given shape.

When this function is executed in a nodal environment the node designation in each position
will be that of the node on which it is executing.

Returns

The nodeof function returns a parallel int of shape s whose value at each position is the
unique node designation on which each position of the given shape is mapped by the shape's
layout.

Examples
/* Assume for the following example that <dpce.h> defines:
shape [2]physical;

and
nodeof (physical) => { 0, 1 }
That is, the unique node designation for the two nodes
of this implementation are 0 and 1.

*/

shape [10]S, [10 block 3]T, U;

nodeof (S) ; /* Denotes parallel int with values:
{0, 8, 0,0, 8,00, 1, 3,3 1) %/

nodeof (T) ; /* Denotes parallel int with values:
{00000 750 5 1 iy M0 0, 0 e T ek

nodeof (U) ; /* Undefined behavior */

97

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.5 The nodepositionsof Function [NEW]
Synopsis

#include <dpce.h>
int:physical nodepositionsof(shape s);

Description

The nodepositionsof function computes the total number of positions of the given shape s
that are mapped to each node of the implementation environment. If the shape s is not fully
assigned, the behavior is undefined.

Returns

The nodepositionsof function returns a parallel int of physical shape whose value at each
position is the total number of positions of shape s mapped to the node that contains that
element of shape physical.

Examples

/* Assume for the following e;{ample that <dpce.h> defines:
shape (2]physical;
and
nodeof (physical) => {0, 11}
That is, the unique node designation for the two nodes
M of this implementation are 0 and 1.
shape (1018, (10 block 31T, Ui
nodepositionsof (S);

nodepositionsof (T);
nodepositionsof (U)7¢

/* Denotes parallel int {s, 51 */
/* Denotes parallel int {6, 4} */
/* Undefined behavior */

98

ok
2
7J

=

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.8 The palloc Function NEW]

Synopsis

#include <dpce.h>
void:void *palloc(shape *s, int bsize);

Description
The palloc function allocates space for a parallel object of the shape pointed to by s and
having element size of bsize bytes, and associates the given parallel object with the shape

object pointed to by s.

The shape pointed to by s must be fully assigned when palloc is called; otherwise, the
behavior is undefined.

Returns

The palloc function returns a null pointer or a pointer to the allocated space.
The return value usually needs to be cast to a particular parallel type.

Examples

shape [20]([20]S, [N]([M]T, U;

intiiSi *x;

palloc (&S, sizeof (*x)): /* Allocates space for a 20x20
parallel int */

palloc(&T, sizeof(*x)): /* Allocates space for an NxM
parallel int */

x = (int:S *)palloc(&S,sizeof(*x)); /* Casting to pointer to
specific parallel type */

palloc (&U, sizeof(*x)); /* Undefined */

99 -

PTY

]

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.7 The pcoord Function [NEW]
Synopsis

#$include <dpce.h>
int:void pcoord(shape s, axis a);

Description

The pcooxd function is a parallel axis coordinate value constructor. For a given axis
specifier a and a given shape s, this function returns a parallel int of shape s whose value
at each position is initialized to the coordinate at the position in the given axis. If a is an
axis number that is outside the range of the rank of shape s, or if s is not fully assigned, the
behavior is undefined.

Returns

. The pcoozd function returns a parallel int of the same shape as s.

Examples

shape [101S, [2][2]T:

int:S x;

int:T y;

x = pcoord(S,0); /* Parallel int of shape S having value 0
in position [0], 1 in position (1],
..., and 9 in position [9]. */

'y = pcooxd(T,1); /* Parallel int of shape T having value 0
in positions [0,0] and [1,0], and 1
in positions ([0,1] and [1,1]. */

pcoord (T, 3): /* Undefined behavior */

100

- h

)

-

’

10

15

20.

25

30

35

40

45

50

55

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.8 The pfree Function [NEW]
Synopsis

#include <dpce.h>
void pfree(void:void *pptr);

Description
The p£ree function causes the space pointed to by pptx to be deallocated. If pptr is a null
pointer, no action occurs. If pptr does not match a pointer returned earlier by the palloc

function, or if the space has already been deallocated by an earlier call to pfree, the
behavior is undefined.

Returns
The pfree function does not return a value.
Examples

shape [20][20]S:;
int:S *x, y;

x = palloc (&S, sizeof (*x)): /* Allocates space */

pfree (x); /* Deallocates space */
pfree (&y); /* Undefined behavior */
pfree (x); /* Undefined behavior */

4.14.1.9 The positionsof Function [NEW]

Synopsis

#include <dpce.h>
int positionsof (shape s):

Description

The positionsof function computes the number of positions in any parallel object of shape
s, which is the product of all the dimensions of the shape. If the shape s is not fully assigned,
the behavior is undefined. -

Returns

The positionsof function returns the computed number of positions.

-Examples

shape [10]([30]S, T:

int n;
n = positionsof(S): /* Returns 300 */
positionsof(T); /* Undefined behavior */

101

10

15

20

25

30

35

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.10 The prand Function [NEW]
Synopsis

#include <dpce.h>
int:void prand(shape s):

Description

The prand function provides a parallel version of the rand function. It constructs a parallel
int of the same shape as s. The sequence of values generated in the active positions of the
return value is implementation-defined. If the shape s is not fully assigned, the behavior is
undefined.

Returns

The prand function returns a parallel int of the same shape as s.

4.14.1.11 Thepsrand Function [NEW]

Symopsis

#include <dpce.h>
void psrand(unsigned seed):;

Description

The psrand function provides the same functionality with respect to the prand function as
the srand function does with respect to the rand function. A call to psrand affects all
subsequent calls to prand regardless of the shape argument to prand.

Returns

The psrand function does not return a value.

102

-k

)

,,..
’

10

15

20

25

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.1.12 The rankof Function [NEW]

Synopsis

#include <dpce.h>
int rankof (shape 8);

Description

The rankof function extracts the rank component value of the shape s. If the shape s is not
fully assigned or partially assigned, the behavior is undefined.

Returns
The rankof function returns the extracted rank value.
Examples

shape [10][50]S, T:

int rank;
rank = rankof (S); /* Returns rank of shape S == 2 */
rankof (T); /* Undefined behavior */

103

)

)

10

15

20

25

30

35

40

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

4.14.2 DPCE mathematics [NEW]

The following functions from <math.h> are redeclared here as elemental functions. The
intent is that they will behave as they are described in §7.10 of [2] when operating on
nonparallel operands, and will behave elementally when any operand is parallel.

double acos(double x) elemental;

double asin(double x) elemental;

double atan(double x) elemental;

double atan2(double y, double x) elemental;
double cos(double x) elemental;

double sin(double x) elemental;

double tan(double x) elemental;

double cosh(double x) elemental;

double sinh(double x) elemental;

double tanh(double x) elemental;

double exp(double x) elemental;

double frexp(double value, int *exp) elemental;
double ldexp(double x, int exp) elemental;
double log(double x) elemental;

double logl0(double x) elemental;

double modf (double value, double *iptr) elemental;
double pow(double x, double y) elemental;
double sqgrt(double x) elemental:;

double ceil (double x) elemental;

double fabs(double x) elemental;

double floor(double x) elemental; —~
double fmod(double x, double y) elemental;

4.14.3 DPCE string handling [NEW]

The following functions from <string.h> are redeclared here as elemental functions. The
intent is that they will behave as they are described in §7.10 of [2] when operating on
nonparallel operands, and will behave elementally when any operand is parallel.

void *memcpy(void *sl, const void *s2, size t n) elemental;
void *memmove (void *sl, const void *s2, size_t n) elemental;
int memcmp (const void *sl, const void *s2, size_t n) elemental;
void *memset (void *s, int c, size_t n) elemental;

104 170

10

15

20

25

30

35

40

45

DPCE Technical Report v X3J11/94-080
Version 1.6 WG14/N395

APPENDICES

A. OTHER PROPOSED EXTENSIONS

There were numerous other extensions that the committee considered and, for the reasons
cited, decided not to include at the current time. References to the text of the actual
proposals, if any, are given for each category of extension in the subsections of this appendix.

A.1 PARALLEL CONTROL FLOW CONSTRUCTS
Although proposed in [13], [20], and [23] and generally thought to be useful, the group did

not reach consensus on the desired semantics. Implementors may choose to revisit this issue.
Meanwhile, the where statement provides adequate functionality.

A.2 FORALL STATEMENT

This was proposed in [26], but was not adopted because it added no new expressive power to
DPCE and because it lacked performance transparency. These limitations were noted in [26]
itself.

A.3 ITERATORS

Iterators are being separately pursued by another X3J11 subgroup whose working document
is [30, 32]. The idea was not added to DPCE for the same reasons as the FORALL statement.

A.4 BIT DATA TYPES
Although not a fonﬁal X3J11/NCEG paper [31], a formal proposal was presented to DPCE on

SRC's bit oriented extensions at its meeting in September, 1993. The proposal was not
incorporated into the current DPCE proposal because of time and resource constraints.

A.5 1/O LIBRARY

Although considered desirable, a parallel /O library was left for future extensions.

A.6 DYNAMIC LAYOUT

Dynamic layout would provide a facility for reorganizing data, e.g., between stages of a
calculation. Such a feature is likely to be communication-intensive, and therefore would lack
performance transparency. The user is always free to explicitly move data with the existing
functionality to redistribute it.

A.7 ARRAYS AS FIRST CLASS OBJECTS

The DPCE proposal could be implemented more elegantly and robustly if C arrays were
simply made first class objects. This would break enormous amounts of existing C code,
though, so parallel objects were introduced as a replacement for first class arrays.

105

v
TN
[

10

15

20

25

30

35

40

45

50

DPCE Technical Report X3J11/94-080
Version 1.6 WG14/N395

A.8 OVERLOADING

Adding a general overloading mechanism would provide a way to manage the redeclared
library functions proposed here, as well as allowing user-written overloaded libraries.
However, this was deemed to place an excessive burden on the implementation, and was one
of the C* features that was not included in DPCE [10]. The use of elemental functions for
providing both parallel and nonparallel functionality for library functions and user-written
functions alleviates the immediate need for this extension.

A.9 CURRENT SHAPE

The concept of a current shape can be useful in code intended to be adaptable to various

. shapes at run time. However, it is more restrictive than the language needs to be. Most of

its functionality was subsumed by shape void. Current shape is discussed in [19].
A.10 INTERMEDIATE SHAPE EQUIVALENCE TEST

The intermediate shape equivalence test in C* requires that the shapes of operands in binary
or ternary operations must be derived from the same shape variable name. This name
equivalence test provides a compile time means for detecting when two shapes may not be
the same at run time. The test is only performed when all operands are derived from shape
variables; the compiler is not required to track all possible shape assignments to determine
the equivalence of shapes and, hence, may report errors where none exist. Implementations
are encouraged to provide a compile-time option that would enable this test, issuing
warnings where C* reports errors.

'A.11 C++ COMPATIBLE PARALLEL INDEXING SYNTAX

The committee adopted numerous syntax changes to ANSI/ISO C. In many cases these
syntax changes will also conflict with C++ syntax. The decision to add syntax was not
capricious, but rather in each case the addition was viewed as necessary to best support
programmers in the writing of DPCE programs.

For example, the where statement was added because the committee felt the difference
between conditionalization (altering the control flow) and contextualization (deactivating
positions of a shape) is significant. Therefore, providing contextualization by overloading the
if statement was rejected as being potentially confusing to programmers. Also, the option of
providing contextualization via a set of library functions to explicitly manipulate the context
of a shape was rejected as being too low-level and error-prone. In particular, the use of
statement syntax allows the compiler to automatically reestablish the prior context upon exit
from the where statement.

There was much discussion about the choice of syntax for the parallel index operator.
Initially the discussion centered on whether parallel indexing needed to be separated from
array subscripting, and to some extent mirrored the debate on whether arrays and parallel
objects needed to be supported separately. Eventually the committee concluded that the
potentially different memory layout requirements of arrays and parallel objects justified
separating the concepts. Therefore, the committee also separated array subscripting and
parallel indexing, which aided the transparency of programs by in effect highlighting the
potentially expensive parallel index operation.

106

10

15

20

DPCE Technical Report - X3J11/94-080
Version 1.6 WG14/N395

However, even after these decisions were reached, questions remained as to which syntax to
use for the parallel index operator. The choice of using square brackets as a prefix operator,
as opposed to the use of square brackets as a postfix operator for array subscripting, reflects
the committee's desire to build upon the similarity of parallel indexing and array
subscripting while emphasizing the fundamental differences.

A proposal was made to better support compatibility with C++ by providing parallel indexing
via the overloading of the function call syntax. The committee felt that the square bracket
indexing notation would be more intuitive to the C programmer. In addition, while
overloading the function call operator might seem to better support C++ implementations of
the DPCE concepts for initial experimentation and evaluation, the committee noted that a
C++ emulation of parallel indexing would be unable to support parallel indexing as both
Ivalues and rvalues. To get the correct semantics requires knowledge of how the result will
be used, which is not available to the implementation of an overloaded C++ operator.
Furthermore, use of function call syntax for parallel indexing would change the precedence of
this operation. Finally, the committee felt that, since parallel indexing was just one of
several desired syntax changes (such as the where statement discussed above), there was no
overriding reason to take extraordinary steps to obtain C++ compatibility in this one case.

A.12 SLICING OF ARRAYS

Extending the slicing proposal to be allowed in array subscripting as well as parallel
indexing was discussed, and while deemed a desirable and straight-forward extension, it was
determined to be beyond the scope of the DPCE proposal.

107

73

DPCE Technical Report
Version 1.6

108

X3J11/94-080
WG14/N395

DPCE Technical Report
Version 1.6

<dpce.h> 6, 7, 9, 92
<math.h> 92, 104
<stdlib.h> 92 }
<string.h> 92, 104
abs 92 :
acos 104
active position 4, 14, 19, 20, 22, 78,
83, 84, 85, 102
additive operators 48
address operator 30
arithmetic conversions 11
array declarators 70
array of parallel 8, 12, 16, 30, 64,
70
array subscripting 16, 70, 106, 107
nonparallel subscript 16
parallel subscript 16, 30
arrays as first class objects 105
asin 104
assignment operators 59
compound assignment 61
simple assignment 60
atan 104
atan2 104
atoi 92
atol 92
bit data type 105
bitwise AND operator 55
bitwise exclusive OR operator 55
bitwise inclusive OR operator 56
bitwise shift operators 51
block 7, 71, 95
C++ compatibility 106
calloc 93
case label 77
cast operators 45
ceil 104
comma operator 63
compatible types 9
composite types 9
conditional operator 57
conditionalization 106
constant expressions 63, 64, 71, 76
context 4
contextualization 6, 14, 19, 23, 40,
56, 57, 82, 106

X3J11/94-080
WG14/N395

INDEX

contextualization statement 78
conversions 11
cos 104
cosh 104
current shape 106
data parallel model 6
declarators 67
dimension 4
dimof 13, 36, 38, 42, 94
DPCE_BLOCK 92
dpce_layout_specs_t 92
dpce_layout_t 92, 95, 96
DPCE_SCALE 92
element 4
elemental 7, 67
elemental execution 4
elemental function 18, 20, 68, 70,
78, 85, 92, 104, 106
elemental pointer 69
elementally assignable 18
equality operators 54
everywhere 7, 82
everywhere statement 84
exp 104
fabs 104
floor 104
fmod 104
for statement 77
frexp 104
function calls 18
function declarators 70
function definitions 85
function types :
compatible function types 18
composite function types 9, 92,
104
elemental (see elemental
function)
nodal (see nodal function)
I/O library 105 ,
if statement 77, 106
inactive position 14, 22, 23, 83
indirection operator 30
initialization 76
integral promotions 11

ot

DPCE Technical Report
Version 1.6

intermediate shape equivalence
test 106 .
iteration statements 77
iterators 105
jump statements 78
layout 4
dynamic 105
physical 6
layoutof 13, 95
ldexp 104
log 104
log10 104
logical AND operator 56
logical OR operator 57
malloc 35, 86, 93
memcmp 104
memcpy 104
memmove 104
memset 10, 104
modf 104
modulus operator 47
multiplicative operators 47
multithreaded 6, 22, 80
newshape 96
~ nodal 7, 67
nodal execution environment 22
nodal function 18, 22, 70, 71, 80,
85, 88
node 4, 6, 22, 97, 98 .
nodeof 97,98
nodepositionsof 91, 98
null pointer constant 12, 54
null pointer to parallel 12
null pointer-to-parallel constant 12,
54
overloading 106
palloc 36, 93, 99, 101
parallel arguments 18, 19, 22, 85
parallel constants 12, 63
parallel control flow 105, 106
parallel indexing 4, 30, 36, 85, 93,
106, 107
nonparallel index 37
parallel index 38
parallel lvalue 12 -
parallel object 4, 7
parallel operand 4, 13
parallel parameters 19, 70

110

X3J11/94-080
WG14/N395

parallel pointer 4, 8, 12, 30, 32, 45,
48, 49, 52, 54, 68
parallel reduction assignment 62
parallel return types 19
parallel types 8
arrays (see array of parallel)
compatible parallel types 9
generic parallel type 64
parallel arithmetic types 8
parallel floating types 8
parallel incomplete types 7
parallel integral types 8
parallel object types 7
parallel structures and unions 8
pointers (see parallel pointer
and pointer to parallel)
parallel value 4
parallel-indexed expression 37, 38,
40
pcoord 15, 39, 40, 63, 87, 90, 100
pfree 93, 101
physical 64, 92
physical shape 4, 6, 7, 18, 22, 23,
80, 92, 98
pointer declarators 68
pointer to parallel 4, 8, 12, 16, 30,
32, 45, 48, 49, 52, 54, 68
position 5
position-oriented 16, 23, 32, 85, 89,
93
positionsof 22, 101
postfix decrement operator 27
postfix increment operator 27
postfix operators 16
pow 104
prand 102
prefix decrement operator 29
prefix increment operator 29
primary expressions 15
promotions 11, 14, 22, 38
psrand 102
gsort 93
rank 5
rankof 13, 42, 103
realloc 93
reduction 5
reduction operators 44, 61, 85
relational operators 52

SN

c

DPCE Technical Report
Version 1.6

replication 14, 22, 30, 38, 45, 60,
63,76
return statement 78
same shape 38
scalar reduction assignment 62
scale 7, 71, 95
shape 7, 66 ;
shape declarators 71
shape objects 7, 72
fully assigned 13, 60, 72, 74, 95,
97, 98, 99, 100, 101, 102, 103
fully unassigned 60, 72, 94
partially assigned 60, 72, 94,
103 :

shape types 5, 7
compatible shape types 9, 13, 36
composite shape types 9
fully specified 7, 9, 72
fully unspecified 7, 9, 72
generic 7, 9, 19, 60, 64, 70, 106
partially specified 7, 9, 72
void 7, 9, 19, 60, 64, 70, 106

shapeof 7, 13, 19, 28, 36, 54, 65

sin 104

single-node environment 22, 88

single-threaded 80

sinh 104

sizeof 35

sliced expression 15, 36, 37, 41

slicing of arrays 107

SPMD 22

sqrt 104

statements 77

stride expression 41

structure members 26

switch statement 77

tan 104

tanh 104

type names 75

type specifiers 66

unary arithmetic operators 34

unary operators 28

unary reduction operators 44

union members 26

usual arithmetic conversions 11

void pointer 12

void:void pointer 8, 12, 64

where 7, 19, 82

where statement 83, 105, 106

111

X3J11/94-080
WG14/N395

