Dec 14 17:46 1994 WG14 N392/X3J11 94-077 Page 1
Document Number: WGl4 N392/X3J11 94-077

C9X Revision Proposal

Title: Extending VLA’s to include variable rank arrays.
Author: Frank Farance)
Author Affiliation: Farance Inc.
Postal Address: 555 Main Street, New York, NY, 10044-0150, USA
E-mail Address: frank@farance.com
Telephone Number: +1 212 486 4700
Fax Number: +1 212 759 1605
Sponsor: X3J11
Date: 1994-12-04
Proposal Category:
__ Editorial change/non-normative contribution
__ Correction
X_ New feature
___ Addition to obsolescent feature list
___ Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
__ Environment
X__ Language
Preprocessor
Library
___ Macro/typedef/tag name
__ Function
___ Header
Prior Art: Fortran 90, HPF, APL, C*, DPCE,
Target Audience: Numeric programming, data parallel applications.
Related Documents (if any): DPCE proposal, VLA proposal, XVLA docs.

Proposal Attached: X_ Yes __ No, but what’s your interest?
Abstract:
The "shapeof()" operator is added to extract the dimensions

of an object. This feature allows programs to operate on
arrays without prior knowledge of their rank (number of
dimensions). The "shapeis()" type qualifier may be used in
declarations to specify the rank and dimenions when then
rank is not known at compile time. Objects may be reshaped
(i.e., interpreted as arrays of different shape) by using
"shapeis ()" in a type cast.

Proposal:

NOTE: This proposal is in the early stages of development.
The intent of the proposal is to sketch the functionality,
semantics, and issues. The proposal will continue to be
developed.

The VLA extensions that have been proposed by MacDonald are
an excellent start for providing varying length arrays.
Basically, the MacDonald proposal provides two features: (1)
allowing the programmer to explicitly pass ‘‘shape’’
information (i.e., length of each dimension) and the pointer
to the array,

-
an
-
iy

Lt
I

Dec 14 17:46 1994 WG14 N392/X3J11 94-077 Page 2

/* The shape is: 10 20 */
int A[10][20];

/*

* The following are passed:

* The shape: 10 20.

* The pointer to the array: A.
iy
foo0(10,20,A);

(2) run-time pasting of shape and pointer to create a type:

int foo(int row, int col, int A[row] [col])
{

T At
}

Thus, the programmer must explicitly pass the shape
information along with every subroutine call. The Ritchie
proposal, also known as the ‘'‘fat pointer’’ proposal, has
the compiler pass shape information along with the pointer
to the array:

/* The shape is: 10 20 */
int A[10][20];

/*
* The following are passed:
* The shape: 10 20.
* The pointer to the array: A.
jol74
bar (&) ;

int bar(int (*A)[?][?])

{

int row;

int col;

/*
* Extract shape information.
* This could be implemented as
* just extracting theh shape info
%*

from the stack, i.e., no divide
* is required.

*/
col = (sizeof((*A)[0]))/(sizeof(int));
row = (sizeof(*A))/(sizeof (int));

row /= col;
}

Both the MacDonald and Ritchie proposals are equivalent with
repsect to the information that is passed from caller to
called function: both shape and pointer are passed. The
main difference is that the MacDonald proposal requires
explicit passing of the information and the Ritchie proposal

(o0

Dec 14 17:46 1994 WGl4 N392/X3J11 94-077 Page 3

requires implicit passing of the information. Each proposal
has their own advantages. The MacDonald proposal doesn’t
require passing several copies of the shape information,
thus may be more efficient for some interfaces:

int A[10]1[20],B[10]1([20],C[10][20];
add_matrix_1(10,20,A,B,C);

int add_matrix_1(int row, int col,
int A[row] [col],
int B[row] [col],
int Clrow] [col])
{
e
}

The Ritchie proposal has the advantage that it reduces
programming errors by having the compiler pass information
that the programmer would have to explicitly declare and
pass otherwise (imagine explicitly passing the shape and
pointer for each function call):

int A[10][20],B[10][20],C[10][20];
add_matrix_2(&A,&B,&C) ;

int add_matrix_2(
int (*A)[?]1([?],
int (*B)[21 21,
int (*C)[?1[?])
{
Vi AR
}

In fact, some compilers may be able to optimize this so that
only one copy of shape is passed as on the argument stack.

The problem is that the rank (the number of dimensions) must
be known at compile time. For a function that performs an
alternating sum reduction (adding all the even elements,
subtracting all the odd elements) that operates on an array,
a matrix, or an N-dimensional array, the rank of the operand
varies. This type of function (common in numeric
applications) cannot be declared within the Ritchie or
MacDonald proposals.

The only solution is for the programmer to write the
explicit pointer and indexing arithmetic -- something that
the compiler *should* do. Aside from being error-prone
(programmer must get indexing arithmetic right), there needs
to be N copies (one at each array reference, possibly
different because of different programmers) to calculate the
offset to the indexed element. One could provide (and
standardize) a function library, but that’s the whole
purpose of providing array indexing in C.

Wy

Dec 14 17:46 1994 WG1l4 N392/X3J11 94-077 Page 4

The solution is to provide an operator "shapeof()" that

returns an array of "size_t", one for each dimension. For

convenience, the "rankof ()" operator has the semantics:
#define rankof (x) ((shapeof (shapeof(x)))[0])

For example:

/* assumes "size_t" is "int" */
int A[10][20][30];

intdy;
printf ("the rank is %d, shape is: ",rankof(A));
for (i =0 ; i < rankof(A) ; i++)

{
printf (" %d",shapeof (A) [i]);
}
printf("\n");
will produce:

the rank is 2, shape is: 10 20

Issue: The lifetime of the result of "shapeof()" has yet to
be determined.

Issue: Scalars (non-arrays) have a rank of zero. Zero-
length objects must be investigated.

The MacDonald VLA proposal allows automatic variables to be
declared with varying length:

int A[N];
Again, there is no mechanism for declaring arrays with
varying length. The "shapeis()" type qualifier is used to
specify the dimensions of the type:

size_t dim_list[] = { 10, 20 };

/* equivalent to B[10][20] */
int shapeis(dim_list) B;

Another possibility is to ‘‘clone’’ shapes from other
variables:

/* C has the same shape as B */
int shapeis (shapeof (B)) C;

Issue: The syntax and/or placement of "shapeis()" is yet to
be refined.

Issue: Must the operand of "shapeis()" have the type '‘array
of "size_t"’'’?

1

D
e
oo

.

Dec 14 17:46 1994 WG14 N392/X3J11 94-077 Page 5

The "shapeis ()" type qualifier can be used as a type cast
with varying rank:

int D[200];
/*
* equivalent:
* int (*E)[lO][ZO]_= (int (*) [10][20]) D;
i
int shapeis(dim_list) (*E) =
(int shapeis(dim_list) *) D;

The Ritchie proposal signals with "[?]" that the shape
information be implicitly passed -- the compiler puts the
shape information on the argument stack. This proposal uses
"shapeis(?)" to signal that shape information is passed.

void xyz(int shapeis(?) G)

{
size_t 1i;
printf("the rank is %d, shape is: ",
rankof (G)) ;
for (i =0 ; i < rankof(G) ; i++)
{
printf(" %d4", (int) shapeof (G) [1]):;
}
printE(“\n");
}
main()
{
int F[10][20];
/*
* Passes both shape and pointer
* because prototype has "shapeis(?)".
L/
xyz (F);
}

This example prints:
the rank is 2, shape is: 10 20
Again, without some feature for handling arrays of varying

rank, the programmer is left with the solution of coding
these features on his/her own.

Summary :
- "shapeof (X)" returns an array of "size_t" that
contains the '‘dimensions’’ of "X".
- "rankof (X)" returns the number of dimensions in
"X". A return of zero indicates X is a scalar (not

an array) .
- "T shapeis(Y) Z" declares the array "Z" of shape

-2

Dec 14 17:46 1994 WG1l4 N392/X3J11 94-077 Page 6

"Y" containing type "T" elements.

- "(shapeis(Y)) 2" recasts "Z" to the shape of "Y".

- "T shapeis(?) Z" declares a function parameter to

have the shape of the argument passed along with the
pointer to the array.

Development Plan:

- Determine lifetime of the result of "shapeof()".
- Investigate zero-length arrays.

- Specify "rankof()".

- Define the term "scalar".

- Develop declaration syntax for "shapeis()" type
qualifier.

- Develop type cast semantics for "shapeis()".

- Determine the type of the argument to "shapeis()".
- Develop declaration syntax for "shapeis(?)".

- Demonstrate sample implementation.

