Dec 14 17:45 1994 WG1l4 N390/X3J11 94-075 Page 1
Document Number: WG14 N390/X3J11 94-075

C9X Revision Proposal

Title: Extending character constants for named characters.
Author: Frank Farance
Author Affiliation: Farance Inc.
Postal Address: 555 Main Street, New York, NY, 10044-0150, USA
E-mail Address: frank@farance.com
Telephone Number: +1 212 486 4700
Fax Number: +1 212 759 1605
Sponsor: X3J11
Date: 1994-12-04
Proposal Category:
___ Editorial change/non-normative contribution
__ Correction
X_ New feature

___ Addition to obsolescent feature list
___ Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
X_ Environment
X_ Language
___ Preprocessor
__ Library
___ Macro/typedef/tag name
__ Function
___ Header
Prior Art: BASIC language extended character constants.
Target Audience: Internationalization and terminal control.
Related Documents (if any): None.
Proposal Attached: __ Yes X_ No, but what’s your interest?
Abstract:
Standard C has a large body of code that is based upon USA
English. Even if a programmer wishes to write a program
based upon some other language character set, e.g.,
Japanese, it is incovenient to do so because the programmer
must acquire a compiler that understands the native
character constants of the *run-time* environment. This
extension allows the programmer to spell the names of
characters using only ISO 646 characters, e.g.,
'i50-8859-1-letter-a’. This feature is also useful for
spelling terminal independent features, such as the UNIX
TERMINFO sequences, e.g., ’'terminfo-clear’ (clears the
screen). This extension does not propose to standardize
these sequences, only to provide a feature for ‘'‘binding’’
character set standards to C so that other standards efforts
may describe how to ‘‘spell’’ they names of their
characters. The programmer would include these character
names by including the appropriate application header, e.g.,
"#include <is0l0646.h>". The existing support in Standard C
for wide character constants does not provide enough support
because is requires the both the compiler and run-time
system to understand the run-time character set -- this

N4

Dec 14 17:45 1994 WG14 N390/X3J11 94-075 Page 2

extension only requires the run-time environment to
understand the run-time character set.

The proposed extension creates a new type of character
constant, ‘‘multiple character constant’’, which can be
promoted to a string, a multibyte character string, a wide
character constant, and a cbaracter constant.

/* wide character constant */
L’ japanese-kana-ha’

/* string paste gives multibyte character string */
L""’japanese-kana-ha’

/* character constant */
’iso-8859-1-solidus’

/* string */
""’terminfo-clear’

The multiple character constant extends the syntax of single
character constants by (1) allowing multiple character names
for characters constants:

#define lsgbr 'iso-8859-1-left-bracket’
#define rsgbr ’'iso-8859-1-right-bracket’
printf ("array%c%$d%c\n", lsgbr,17,rsqgbr) ;

(2) allowing character constants to combine with string
constants for string pasting:

/* These are equivalent: */
printf ("array" lsgbr "$d4d" ' rsgbr "\Nn"™,17Y%;
printf("array[%d]l\n",17);

(3) allowing multiple character constants (such as a ‘‘clear
screen’’ sequence) to be promoted to string constants by

pasting with the empty string "":

/* Clears the screen. */
printf("" ‘terminfo-clear’);

(4) promotes to an unsigned integer if used unadorned in an

expression:
char a,z;
a = ’'iso-8859-1-letter-a’;
z = ’'iso-8859-1-letter-a’+25;

These features are especially useful for writing portable
code for systems that interact with several character sets:

unsigned int ascii_to_ebcdic[256] =

{
["ascii-letter-a’] = ’‘ebcdic-letter-a’,
["ascii-letter-b’] = ’‘ebcdic-letter-b’,

h Dec 14 17:45 1994 WG1l4 N390/xX3J11 94-075 Page 3

['ascii-letter-c’] = ‘ebcdic-letter-c’,
e e o e)
["ascii-letter-z’] = ‘ebcdic-letter-z’,

1ot

unsigned int ebcdic_to_ascii[256] =

{

‘ascii-letter-a’,
‘ascii-letter-b’,
‘ascii-letter-c’,

[’ebcdic—leﬁter—a’]
["ebcdic-letter-b’]
["ebcdic-letter-c’]
R

[’ebcdic-letter-z’] = ’‘ascii-letter-z’,

B

The proposal will be developed by investigating and
specifying the following:

- Creating a new type of character constant.

- Interaction with existing multibyte character
strings.

- Interaction with existing wide character
constants.

- String pasting with character constants.

- Sample implementation to verify concepts.

- Interaction with existing library functions.

