psfiat
file iost modifed: -
Thu Dec 1 16:32:09 1994 C"veSDR

)

TITARRRLB LSRR ERBRLEBYRY. /REBLEYNNNRNNN

[
-

A RENR

388

71

Line
1 Defect Reports UK 002 to 025
2 )
3 BSI reference: IST/S/-/14 CP021. WG/V//ng/g/
S | ,
xX37//99-673
é These DRs were all accepted for forwarding to WGl4 at the 1994-11-10 meeting
7 of IST/S/-/14, who have not, however, examined the Suggested Technical
8 Corrigenda.
9
10 .-
n Clive D.W. Feather | Santa Cruz Operation | If you lie to the compiler,
12 clive@sco.com | Croxley Centre | it will get its revenge.
13 Phone: +44 1923 813541 |-Hatters Lane, Watford | - Henry Spencer
4 Fax: +44 1923 813811 | WDl 8YN, United Kingdom |
15
16
17
18 Each Defect Report should be treated as if preceeded by the following
19 boilerplate:
20

** Submitted to BSI by Clive D.W. Feather <clive@sco.com>

** In this Defect Report, identifiers lexically identical to those declared
** in standard headers refer to the identifiers declared in those standard
** headers, whether or not the header is explicitly mentioned.

** This Defect Report has been prepared with considerable help from Mark
** Brader, Jutta Degener, Ronald Guilmette, and a person whose employment
** conditions require anonymity. However, opinions expressed or implied
** should not be assumed to be those of any person other than myself.

Defect Report UK 002: consistency of implementation-defined values

The restrictions that apply to "implementation-defined" entities are
not clear.

What restrictions apply to implementation-defined entities ? If the
value of an expression is implementation-defined, need the implementation

always produce the same result ?

For example, the value of the expressions "7/-3®" and "8/-3" must each

be either -3 or -2. Can an implementation make them different (that is,
use a different implementation-defined choice for each), or must it make
the same choice for all integral divisions involving a negative quantity ?

As another example, can the number of significant characters and the

significance of case in an identifier with external linkage depend on the
identifier itself, or must it be the same for all possible identifiers ?

Defect Report UK 003: zero sized allocations

The use of the word "unique® in subclause 7.10.3 is ambigquous, and the
handling of zero size allocations is incomplete.

7.10.3 reads: ' .
|] If the size of the space requested is zero, the behavior is
|| implementation-defined; the value returned shall be either a null pointer

|} or a unique pointer.

Does the term “unique® mean “"different every time®, or does it mean “there
is a single pointer returned by all calls with size zero® (as might be
presumed from the ordinary dictionary definition of Yunique") ?

In other words, if ®"malloc(0)" does not return a null pointer, is the
following expression: i (](‘,‘
LY

malloc(0) == malloc (0)

Printed: Thu Dec 1 16:42:12 1994 Page 1



psiat ] :::::TT:::quu' (::Ii"(é!;[:>‘2!;

8%!&&&&28383&'8!8;

33

AEREEREE R

101
102
103
104
105
106
107
~ j08
109
10
bHdi
112
13
114
118
116
17
118
119
120
121
122
123
124
125
126
127
128

131,

always z6ro, always non-2ero, ©r implementatjon-defineq ?

If unique means °there is a single pointer®, yhat is the result of
attempting to free that pointer ? How does the wording of 7.10.3 applys

|| The value of 2 pointer that refers to freeq space ig indeterminata.
Possibly nothing happens, because the pointer goes not reallY point to a
block of memory. In that case, is the following code gtrictlY conforming ?

#include <stdlib.h>

/% con */

void *p = malloc (0);-
if (p != NULL)

free (p); /* Line a +/
free (p); /* Line B ¢/
}

What is the behavior if each of lines A and B are reached ?

If ®"uynique® means “different every time®, then g@ach such call still consumes
address space, even though no storage actually needs to be allocated, and
therefore the call can fail due to exhaustion of memory. Thus malloec (0)

can return a null pointer, while the Standard seems to suggest that an
implementation can return either null pointers or unique pointers, put

not both. This is a defect in the existing wording.

Suggested Technical Corrigendum

If "unique® means *"there is a single pointer®, then change the

penultimate sentence of 7.10.3 from:
If the size of the space requested is zero, the behavior is
implementation-defined; the value returned shall be either a null
pointer or a unique pointer.

If the size of the space requested is zero, the behavior is
implementation-defined; the value returned shall be either a null--— — :----
pointer or a unique pointer. The values returned by two zero-length
allocations shall compare equal. Freeing the value returned by a
zero-length allocation shall have no effect. If that value is used as

an operand of the unary * operator, or of a + or - operator except one
whose other operand has integral type and value zero, the behavior is
undefined.

If *unique® means "different every time®, then change it to:
If the size of the space requested is zero, the behavior is
implementation-defined; either a null pointer is always returned, or
the behavior is as if the size were some unspecified non-zero value.
In the latter case, if the returned pointer is not a null pointer and
is used as an operand of the unary * operator, or of a + or - operator
except one whose other operand has integral type and value zero, the
behavior is undefined.

[See also Defect Report UK 006.]

Defect Report fIK 004: closed streams

Calls to fsetpos with positions in closed and reopened streams are permitted,
but should be undefined.

The definition of £setpos (subclause 7.5.9.3) requires the fpos_t argument
to have a value generated by a successful call to fgetpos on the same
stream. However, it does not require the stream to refer to the same

file. If the stream does not so refer, the effect should be explicitly
undefined. ; Al

Suggested Technical Corrigendum’

Printed: Thu Dec 1 16:42:12 1994 Page



psfiat
. fie last modihed: -3
s e 1ssor o CIIVESDR:

145 In 7.9.9.3, change:

148 ... an earlier call to the fgetpos function on the same stream.
—147 to:
18 ... an earlier call to the fgetpos function on the same stream; there
49 shall not have been an intervening call to the fclose or freopen
150 function with that stream.

151
152
153 Defect Report UK 005: legitimacy of type synonyms
154
155 The Standard does not clearly indicate when the spelling of a type name is
156 or is not significant; in other words, when a type name may be replaced by
187 another type name representing the same type.

158
159 Part 1

160 | ~c----

161 Subclause 6.5.4.3 reads in part:

162 || The special case of void as the only item in the 1list specifies that
163 || the function has no parameters.

184

185 Subclause 6.7.1 reads in part:

166 || (except in the special case of a parameter list consisting of a single
167 || parameter of type void, in which there shall not be an identifier).

168

169 In both cases, the word "void®" is set in the typeface used to indicate C code.
170

71 In the code:

172

173 typedef void Vold;

174

175 extern int £ (Void):

176 i

177 int £ (Void) { returm 0; 1}
—~

78
9 is the declaration on line 2 strictly conforming, and is the extermal
180 definition on line 3 strictly conforming ?

181
182 Part 2

183 | ------

184 Subclause 5.1.2.2.1 reads in part: D H TR L _LEeyes
185 || It can be defined with no parameters:

186 11 int main (void) { /* ... */ 1}

187
188 Is the following definition of main strictly conforming ?

189
190 typedef int word;

192 word main (void) { /* ... */ }

196 Are there any circumstances in which a typedef name is not permitted instead
197 of the type it is a synonym for ? If so, what are they ?

199
200 Defect Report UK 006: null pointer conversions
201
202 The Standard does not define semantics for the explicit conversion of null
203 pointer constants and for the implicit conversion of null pointers.
204
205 Subclause 6.2.2.3 reads in part:
206 || If a null pointer constant is assigned to or compared for equality to
207 |1 a pointer, the constant is converted to a pointer of that type. Such a
208 || pointer, called a null pointer, is guaranteed to compare unequal to 2
09 || pointer to any object or function.
o | |1
an || Two null pointers, converted through possibly different sequences of
212 || casts to pointer types, shall compare equal.
213
214 Given the definitions: S
005
216 void * p = 0;

Printed: Thu Dec 1 16:42:12 1994 Page 3



pstat et e oo NIVESDRS

[
217 int * 4 = 0;
218
219 does the standard guarantee that the expression
2 L
21 p==1
222
223 always evaluates to 1 ? The last quoted sentence only covers casts, and
224 not the implicit conversions of that comparison. Conversely, do the
225 expressions:
226
227 (int *) 0
228 120 : (int *) 0
et f
230 yield null pointers of type (int *) ? The quoted text does not cover the
231 case of a null pointer constant being converted other than by assignment
232 or in a test for equality, yet expressions such as these are widely used.
233
234 Suggested Technical Corrigendum
235 | -----c--ceeemsocommmmccccone-
236 In subclause 6.2.2.3, change:
237 Two null pointers, converted through possibly different sequences of
238 casts to pointer types, shall compare equal.
239 to:
240 Conversion of a null pointer to another pointer type yields a null
241 pointer of that type. Any two null pointers shall compare equal.
242
243 Alternatively, a common term could be introduced to more conveniently
244 describe the various forms of pointer that cannot be dereferenced. In
245 this case, replace the last two paragraphs of subclause 6.2.2.3 with:
246 For each pointer type, there exist values which can participate in
247 assignment and equality operations, but. which cause undefined behavior
248 if dereferenced. These are referred to as _undereferenceable . An
249 undereferenceable pointer compares unequal to any other value of the
250 same pointer type. For each pointer type, one particular undereferenceable i
251 pointer value is called the _null pointer_.[*] k
252
253 [*] Since there is only one such value, all null pointers of the same
254 type compare equal.
255
266 An integral constant expression with the value 0, or such an expression
257 cast to type void *, is called a _null pointer constant_. If a null
258 pointer constant is assigned to or compared for equality with an object
259 of pointer type, or cast to pointer type, then it is converted to the
260 null pointer of that type. Conversion of a null pointer to another pointer
261 type produces the null pointer of that type.
262
263 If the answer to Defect Report UK 003 is that “unique® means ndifferent
264 each time®, then replace the last two sentences of subclause 7.10.3 with:
265 If the size of the space requested is zero, an undereferenceable pointer
266 is returned. It is implementation-defined whether this is always a null
267 pointer or whether the implementation attempts to produce a value distinct
268 from any other undereferenceable pointer. Any pointer value returned by
269 an allocation can be passed to the free function; if the value is not a
270 null pointer, it becomes indeterminate[*]. The value of a pointer that
271 refers to any part of a freed object is also indeterminate.
272 .
273 [*] A subsequent allocation may return a pointer value with the same
274 bit pattern, but a strictly conforming program can’t detect this.
275
276 %
277 Defect Report UK 007: consistency of the Standard
278
279 Defects exist in the way the Standard refers to itself.
280
281 Part 1
202 | ------ T
283 The introduction to the Standard reads in part:
284 || The introduction, the examples, the footnotes, the references, and
285 || the annexes are not part of this International Standard. i
2 006
287 While it is not, strictly speaking, an inconsistency for text that is not
part of the Standard to specify which text is part of the Standard, it is

288

Printed: Thu Dec 1 16:42:12 1994 Page 4



psfiat e : .
_— Thu Dec 1 16:32:00 1994 (::I'\’GBS;[:'FL

289 confusing for this to be the case when other text that *looks* like part
290 of the Standard isn‘’t - the examples and footnotes.
291
92 In particular, placing this information - necessary for interpreting the
23 text of the Standard itself - outside that text causes a danger that, when
some other document is produced that purports to contain the full text of
the Standard, the Introduction will be omitted while the footnotes and
examples are retained. A reader of such a document who is not aware of the
text of the introduction will then be misled as to the Standard’s contents.
Whilst this is not the responsibility of ISO, it is another reason for
regularising the situation.

C Standard" by Herbert Schildt, and I have been informed (but have not
confirmed) that it has also happened with the version of the Standard
distributed by the Australian National Body.

The introduction to the Standard reads in part:
|| The language clause (clause 7) ...
310 || The library clause (clause 8) ...

204
25

296

297

28

299

300

301 Note that this has definitely happened in the case of “The Annotated ANSI
302

3038

304

305

306

307

308

309

312 These references are wrong.
314 Suggested Technical Corrigendum

316 In the introduction, change:

317 The introduction, the examples, the footnotes, the references, and
318 the annexes are not part of this International Standard.
319
320 The language clause (clause 7) ...
a2;
T2 The library clause (clause 8) ...
23 to:
324 As specified in the definitions and conventions clause (clause 3),.
325 this introduction, the examples, the footnotes,.the references, and
226 the annexes are not part of this International Standard.
327
sz The language clause (clause 6) ...
329
230 The library clause (clause 7) ...
331

332 Insert at the start of clause 3:
The introduction, the examples, the footnotes, the references, and

the annexes are not part of this International Standard.

Defect Report UK 008: reservation of identifiers

The Standard is unclear in its description of what applications can and
cannot do with identifiers that are reserved to the implementation for
certain uses. i

Subclause 7.1.3 reads in part:
|| Bach identifier with file scope listed in any of the following subclauses

|| (including the future library directions) is reserved for use as an
|| identifier with f£ile scope in the same name space if any of its
|| associated headers is included. A

Does this include reservation as macros ? In particular, is the following
code:

EESEEEREERRE B R

3852 #include <stddef.h>
1 $#define size_t 42
4 ke
355 strictly conforming, or could it cause a redefinition of the macro ®"size_t® ?
356 Similarly, can another macro legitimately defined by <stddef.h> (such as
357 offsetof) include size_t in its replacement list, so that: ()(\17
358
359 #include <stddef.h>
360 #undef size_t P

Printed: Thu Dec 1 16:42:12 1994 Page 5



pstat | wenmetet  ClivesDRS

Une

381 #define size_t 42

342 VAP

363 offsetof (struct_type, field)

364

365 fails to expand correctly ? It is not clear how the wording of footnote

366 91 applies, and this is in any case not part of the Standard (except in

367 Australia :-).

368

369 Defect Report UK 009: details of reserved symbols

370

371 The wording of subclause 7.13 is unclear.

372

373 Does the term "any combination® in 7.13 include the empty combination ? In
374 other words, are names like E2, tom, IC_X, and memo reserved ?

375

376

377 Defect Report UK 010: gmtime and localtime

378

379 The Standard’s description of the static objects used by <time.h> functions
380 is misleading.

381

382 Subclause 7.12.3 reads in part:

383 || these functions return values in one of two static objects: a broken-down
384 |1 time structure and an array of char. Execution of any of the functions
385 || may overwrite the information returned in either of these objects by any
386 || of the other functioms.

387

388 Does this mean that, for example, localtime and gmtime must share a single
389 broken-down time structure, and so the value returned from gmtime, if not
390 a null pointer, must equal the value returned from localtime (and this value
3901 cannot change during execution of the program) ?

392

393 The wording ®"the other functions® also implies that a call to gmtime can

overwrite a previous call to localtime, but not a previous call to gmtime.
This is clearly ridiculous.

Suggested Technical Corrigendum

In subclause 7.12.3, change:
these functions return values in one of two static objects: a broken-down

time structure and an array of char. Execution of any of the functions
may overwrite the information returned in either of these objects by any
of the other functions.

to:
these functions each return a pointer to an object of static storage

duration after assigning a value to it. Execution of any of these
functions may overwrite the information returned in any of these objects
by a previous call to any of these functionms.

Defect Report UK 011: undeclared identifiers

The Standard is not clear on whether the use of an undeclared identifier as
a primary expression requires a diagnostic message.

Subclause 6.3.1 states that:
|| An identifier is a primary expression, provided it has been declared as

|| designating an object (in which case it is an 1lvalue) or a function (in
|| which case it is a function designator).

It has been suggested that if no declaration of some identifier is visible
in the current scope when that identifier appears in an expression, the
identifier is not a primary expression, and therefore the syntax of 6.3.1
is violated (in other words, there is no valid parse for the expression).
This would thus require a diagnostic for an undeclared identifier.

Is this interpretation correct ? If yes, then it needs to be made clear
that this does not prevent a previously undeclared function from being
called by a strictly conforming program (see 6.3.2.2).

If not, does an undeclared identifier require a diagnostic, and if so, why ?
If not, is this a deliberate policy, or is it a defect that needs correction ?

008§

Printed: Thu Dec 1 16:42:12 1994 Page



pst.at . Shed: o
meree ez i CHIVESDR

Une

433

a4

5 Defect Report UK 012: bad declarations

36 s

437 The Standard contains no constraint to prevent declarations involving types
438 not defined by subclause 6.1.2.5.

439

440 Subclause 6.5 states that:

441 || A declaration shall declare at least a declarator, a tag, or the members

|| of an enumeration.
There seems to be no constraint that a declarator generate a well-formed

a2

443

444 type. Consider the following code:
445

pr7 {

447 int a []I[5]; /* Line A */

448 int x, b []1I[5]; /* Line B */

449 }

450

451 Neither a nor b has a well formed type. Does line A nevertheless

452 =declare a declarator®, or does it violate the quoted constraint ?

453 If it violates the constraint, does line B ?

454

455 Is it the intent of the Standard that an ill-formed (but syntactically

456 correct) type generate a diagnostic ? If so, then is there one, or does one
457 need to be added ?

460 Defect Report UK 013: tags and incomplete types

462 The wording of subclause 6.5.2.3 concerning tags is defective in a number
463 of ways.

454
465 Part 1
“ ......
©®7 The first paragraph states that:
458 If this declaration of the tag is visible, a subsequent declaration-that
469 uses the tag and that omits the bracketed list specifies the declared
470 structure, union, or enumerated type.
471 This neither handles the case of a type name (for example, in the operand

472 of the sizeof operator), nor does it make it clear whether or not the rule L R £
473 applies within the braces of the first declaration (the tag is in scope from

474 the open brace).

476 In other words, it fails to address either occurrence of ®struct tag **
477 in the following code:

479 {

480 struct tag { int i [sizeof (struct tag *)]; };
481 int j [sizeof (struct tag *)];

482 V& SO ¢

487 The second paragraph does not adequately distinguish between type specifiers
438 which refer to an incomplete type and those which refer to a type in an outer
489 scope. For example, in the following code, it fails to indicate whether or

490 not all the uses of the tag refer to the same type:

491

492 struct tag:
493 struct tag *p;
494 {
495 struct tag *q:;
96 I® e ' ®f
7 }
©8 struct tag { int member; }:
499 e -

500 Part 3

ol 009
502 The handling of enumerated types before their content is defined is also

503 unclear; this was covered to some extent in DR013Q5 and the subsequent

504 discussion on the WG14 mailing 1list.

| Printed: Thu Dec 1 16:42:12 1994 Page 7



psfiat e o moereoe . NIVESDRS

Line

505

504 For example, what is the status of the following code:
807

508 enum tag { e = sizeof (enum tag ******) 1

509

510 or of:

812 enum tag { e0, el, e2, e3 };

513 {

514 enum tag2 { e4 = sizeof (enum tag); }:
518 enum tag { e5 = sizeof (enum tag):; gt
516 }

817

If an enumeration tag cannot be used before the end of the list defining its

518
519 contents, a diagnostic ought to be required.

820

821 Part 4

m ------

823 If the same tag is used in a type specifier with a contents list twice in the

824 same scope, it is unclear whether or not a diagnostic is required. It could
825 be argued that, since this is forbidden by the semantics in 6.5.2.3, it is
826 not excluded from the second constraint of 6.5, and so a diagnostic is

827 required by that constraint. However, this may be viewed as clutching at

828 straws. An explicit constraint should be added.

Suggested Technical Corrigendum

Rather than making piecemeal changes to address each issue separately,
the whole subclause should be rewritten. Footnote numbers have been chosen

to match the present footnotes.

Constraints
A specific type shall have its content defined at most ornce.

A type specifier of the form
enum identifier
without an enumerator list shall only appear when the type it specifies

is complete.

829
530
531
832
533
534
&35
536
837
s38
539
540
541
542
543
544 Semantics i e

545 A1l declarations of structure, union, or enumerated types that have

545 the same scope and use the same tag declare the same type. The type is
547 incomplete [63] until the closing brace of the list defining the content,
548 and complete thereafter.

549

850

&51

552

863

854

855

856

857

858

859

850

[63] An incomplete type méy only be used when the size of an object of
that type is not needed. [Append the present wording, or see
Defect Report CA-2-09 - submitted independently - for altermative

wording.]

Two declarations of structure, union, or enumerated types which are in
different scopes or use different tags declare distinct types. Each
declaration of a structure, union, or enumerated type which does not
include a tag declares a distinct type.

A type specifier of the form

881 struct-or-union identifier { struct-declaration-1list }

562 opt

563 or

564 enum identifier { enumerator-list }

555 opt

566 declares a structure, union, or enumerated type. The list defines the
567 *structure content*, *union content*, or *enumeration content*. If an
868 identifier is provided[64], the type specifier also declares the

569 identifier to be the tag of that type.

§70

571 [64] If there is no identifier, the type can, within the translation

572 unit, only be referred to by the declaration of which it is a part.

573 Of course, when the declaration is of a typedef name, subsequent ()‘ ()
574 declarations can make use of that typedef name to declare objects
875 having the specified structure, union, or enumerated type.

576

Printed: Thu Dec 1 16:42:12 1994 : Page 8



pstiat
file lost modified:

Thu Dec 1 16:32:09 1994

ClivesDR

Line
877 A declaration of the form
878 struct-or-union identifier ;
—.679 specifies a structure or union type and declares the identifier as the tag
%0 of that typel62].
81
582 [62] A similar construction with enum does not exist.
683
584 If a type specifier of the form
585 struct-or-union identifier
586 occurs other than as part of one of the above constructions, and no
587 other declaration of the identifier as a tag is visible, then it
588 declares a structure or union type which is incomplete at this point,
589 and declares the identifer as the tag of that typel[62].
590
891 If a type specifier of the form
592 struct-or-union identifier
593 or
594 enum identifier
595 occurs other than as part of one of the above constructions, and a
596 declaration of the identifier as a tag is visible, then it specifies
897 the same type as that other declaration, and does not redeclare the tag.
598
599
600 Defect Report UK 014: meaning of lvalue
601
602 Constraints that require something to be an lvalue place an unacceptable
603 burden on the implementation.
604
805 Subclasue 6.2.2.1 states in part:
606 || An lvalue is an expression (with an object type or an incomplete type
607 || other than void) that designates an object.
608
609 Given the declaration ®"int a [10], i:", the expression "“a [i] " designates
) an object, and is thus an lvalue, if and only if ®"i* has a value between 0
1 and 9 inclusive (see Defect Report 076 for further details). Now consider
612 the Constraint in subclause 6.3.3.2:
613 || The operand of the unary & operator shall be either a function
614 || designator or an lvalue that designates an object ....
815
616 This means that the expression "&alil”® is a constraint violation whenever
%17 | wi® has a value outside the range 0 to 9 inclusive, and that therefore a
618 diagnostic is required, at run-time !
619
620 The defect 1s that the operand of the unary & operator does not need to
é21 be an lvalue that designates an object, but rather an 1lvalue which, 1if
622 evaluated with its operands having suitable values, could designate an object.
&23
624 There are probably other parts of the Standard with the same problem,
625 such as 6.3.2.4, 6.3.3.1, and 6.3.16.
626
627
628 Defect Report UK 015: consistency of the Standard
629
630 The change to the n conversion specifier in subclause 7.9.6.2 made by TC1,
&3] DR014Q2, should also be applied to subclause 7.9.6.1. Change:
632 No argument 1is converted.
633 to:
&34 No argument is converted, but one is consumed. If the conversion
&35 specification with this conversion specifier is not one of %n, %ln,
836 or %hn, the behavior is undefined. ¢
637
638 In addition, an entry something like:
839 A %n conversion specification for the fprintf or fscanf functions
40 is not one of %n, %ln, or %hn (7.9.6.1, 7.9.6.2).
dl should be added to Annex G.2.
12
&43
44 Defect Report UK 016: consistency of the Standard
645
646 The change to subclause 6.3 made by TCl, DR053Q1, should also be applied ,?
847 in Annex G.2 (page 200). B
648

Printec: Thu Dec 116:42:12 1994

Page 9



sstiat » e e CHIVESDRS

SETRREBREEBTRRREEREE Yy

Defect Report UK 017: Trigraphs

The standard’s description of the replacement of trigraphs is contradictory.

Subclause 5.2.1.1 reads in part:
|1 All occurrences in a source file of the following sequences of three

|| characters (called trigraph sequences [7]) are replaced with the
|| corresponding single character.

N |
|| Bach ? that does not begin one of the trigraphs listed above is not

|| changed.
Since the second character in each trigraph is a ? that does not begin

the trigraph, this is a direct contradiction.

Suggested Technical Corrigendum

Change the last sentence of the cited text to:
Each ? that is not part of one of the trigraphs listed above is not

changed.

Defect Report UK 018: Operators and Punctuators

The description of operators and punctuators is confusing, and the
constraints are contradictory.

Subclause 6.1.5 Constraints reads:
|| The operators [ ], (), and ? : shall occur in pairs, possibly

|| separated by expressions. The operators # and ## shall occur in
| | macro-defining preprocessing directives only.

Subclause 6.1.6 Constraints reads:
The punctuators [ 1, ( ), and { } shall occur (after translation phase

| 4) in pairs, possibly separated by expressions, declarations, or
| statements. The punctuator # shall occur in preprocessing directives
|

only.

Consider the code:

#define STR(x) #x

STR ({) /* Line A */
STR (:) /* Line B */
STR ([) ‘/* Line C */
STR (%) /* Line D */

Line A appears to be strictly conforming, since the first sentence of
the constraint of 6.1.6 does not apply during translation phase 4. Line B
violates the constraint of 6.1.5. The interpretation of line C depends
on whether the [ is an operator or a punctuator !

Line D violates both constraints, but again which one depends on whether
it is an operator or a punctuator, something which is not made clear in
the Standard.

Assuming that the intent was for line B to be strictly conforming, and
that ®"(after translation phase 4)® was inadvertently omitted from 6.1.5,
the first sentence of each of these Constraints is nugatory, as any
program which violates these constraints also violates a syntax rule
elsewhere in clause 6. The remaining sentences would be better expressed
as part of subclause 6.8. It is also arguable that the concepts of operator
and punctuator are better merged at the syntactic level, and separated out
only at the semantic level.

Suggested Technical Corrigendum

Delete the Constraints of subclauses 6.1.5 and 6.1.6. Add the following

constraint to 6.8:
A # preprocessing token shall only occur within a replacement-list
or when permitted by the syntax rules of this subclause. A ##
preprocessing token shall only occur within a replacement-list.

Printed: Thu Dec 1 16:42:12 1994 Page

10



pstlat ) 3 =
tne o Trgszmme - CHVOSDR

21 Add to the end of the Constraints of subclause 6.1, just before the full
722 stop:

Y , and shall not be # or ##
]
725 Alternative Suggested Technical Corrigendum

726 | ---c--cc--cccccececertcccteccccccccccccnn-
727 In subclause 6.1 syntax, delete both occurences of “operator® and replace

728 the second occurence of "punctuator®" by "pp-punctuator®.

730 Delete subclauses 6.1.5 and 6.1.6, and replace them by the following:
731

732 6.1.5 Punctuators
733 Syntax:
734 pp-punctuator:
735 punctuator
736 pp-only-punctuator
737 pp-only-punctuator: one of
738 # ## defined
739 punctuator:
740 G J (1 B %) R E o
741 ++ -- & * + - ~ | sizeof
742 / % << >> < > <=>= == |=A | && ||
743 D& g et Y
744 = %= [= %= += -= <<= >>= &= A= l=
745
746 Semantics: .
747 A punctuator is a symbol that has independent syntactic and semantic
748 significance. Depending on context, some punctuators may specify an
749 operation to be performed (an /evaluation/) that yields a value, or
750 yields a designator, or produces a side-effect, or a combination
751 thereof; in that context, the punctuator is known as an /operator/. An
762 /operand/ is an entity on which an operator acts.
753
4 Add the following constraint to 6.8:
55 A # preprocessing token shall only occur within a replacement-list
756 or when permitted by the syntax rules of this subclause.: A ## -
757 preprocessing token shall only occur within a replacement-list.

758
759
760 Defect Report UK 019: ranges of integral types .

761
762 It appears to be possible to create implementations with unreasonable

763 arrangements of integral types.

764
765 Subclause 6.1.2.5 states various rules which allow the following

766 deductions to be made:
767

768 SCHAR_MAX <= SHRT MAX
769 SHRT MAX <= INT_MAX
770 INT_MAX <= LONG_MAX
771 SCHAR_MIN >= SHRT_MIN
772 SHRT MIN >= INT_ MIN
773 INT_MIN >= LONG_MIN
774 SCHAR_MAX <= UCHAR_MAX
775 SHRT MAX <= USHRT MAX
776 INT_MAX <= UINT_MAX
777 LONG_MAX <= ULONG_MAX
778

779 and, depending on the interpretation of the term *the same amount of .
780 storage":
781

782 sizeof (unsigned short) == sizeof (short)
783 sizeof (unsigned int) == sizeof (int)
T4 sizeof (unsigned long) == sizeof (long)

.86 However, (based on the preliminary discussions of DR 069, which allow padding
787 bits in integral types) there does not appear to be -any requirement for the

788 following:

789 O 1 3
7% UCHAR_MAX <= USHRT MAX ’

1 USHRT_MAX <= UINT MAX

792 UINT _MAX <= ULONG_MAX

| Printed: Thu Dec 1 16:42:12 1994 Page 11



pstat o o i CNIVESDRS

s sizeof (short) <= sizeof (int)
sizeof (int) <= sizeof (long)

b
w5 UCHAR_MAX <= INT_ MAX
796
»7 The first five of these are necessary to allow reasonable deductions to
798 be made about the behavior of types in the presence of padding bits (for
79 example, that unsigned long can hold any value representable in any
800 integral type). The sixth is necessary to allow the <ctype.h> functions
801 to behave sensibly (it is also assumed by example 2 of subclause 5.1.2.3).
802
803 Suggested Technical Corrigendum
04 | s
805 In subclause 6.1.2.5, change in the fourth paragraph:
806 In the 1list of signed integer types above, the range of wvalues
807 of each type is a subrange of the values of the next type in the
808 list.
809 to:
810 In the list of signed integer types above, the range of values
811 of each type is a subrange of the values of the next type in the
812 1ist, and the size of an object of each type is not greater than
818 the size of an object of the next type in the list.
814
815 Add to the fifth paragraph:
816 The range of values of each unsigned integer type is a subrange of
817 the next type (in the list unsigned char, unsigned short, unsigned
818 int, unsigned long).
819
820 Add to the fifth or eighth paragraph:
a2l The range of values of the type unsigned char is a subrange of
822 the values of the type int.
&3
824
825 Defect Report UK 020: Relational and Equality operators
a26
T

827 The descriptions of these operators with pointer operands contain several
828 defects.

Consider the following code:
char *s = ®"a string®:;
if (s >= NULL)
[xEis

Subclause 6.3.8 Semantics reads in part:
|| If the objects pointed to are not members of the same aggregate or union

|| object, the result is undefined
This implies that the comparison causes undefined behavior.

Subclause 6.2.2.1 reads in part:
|| Such a pointer, called a null pointer, is guaranteed to compare unequal

|| to a pointer to any object or function.
This implies that the comparison is guaranteed to yield ®"false®.

This is a direct contradiction.

Subclause 6.3.9 Semantics reads in part:
|| Where the operands have types and values suitable for the relational
|| operators, the semantics detailed in 6.3.8 apply.

This can reasonably be read as meaning that, whenever the constraints of
6.3.8 apply, its definitions should be used, even if that would result in
as9 undefined behavior. [The phrase ®"and values® can reasonably be read as

860 requiring only that the pointers both be to objects; it does not necessarily

PR EREEREEEERERRRGREEREEBERS

861 mean that the result of the comparison must be defined.] (3” 4
852 !
863 It further reads:

864 || If two pointers to object or incomplete types are both null pointers,

Printed: Thu Dec 1 16:42:12 1994 Page 12



psfiat A
oo 1 1eso e CHIVESDR:

Line
865 |] they compare equal. If two pointers to object or incomplete types compare
a6 || equal, they both are null pointers, or both point to the same object, or

f || both point one past the last element of the same array object.

8
869 This says nothing about the comparison of any other pointers. Now,-subclause
870 3.16 reads in part:

871 || Undefined behavior is otherwise indicated [...] by the omission of any
872 || explicit definition of behavior.

873

874 Thus, in:

875

876 int a, b:

877 &a == &b

878

879 the comparison causes undefined behavior !

880

881 Part 3

82 | ------

883 The above citation does not allow for the case where one pointer is to an
884 object, and the other is one past the last element of an array object. If
885 an implementation places two independent objects in adjacent memory

886 locations, a pointer to one would equal a pointer to just past the other

887 on many common implementations.

888

889 If these pointers are not to be viewed as identical, then the wording is

890 defective.

891

892 Suggested Technical Corrigendum

893 | cc--emeeeeccese s m e

894 In subclause 6.2.2.1, replace the cited text by:

895 Such a pointer is called a null pointer.

896

Doz In subclause 6.3.9, replace the first paragraph of the semantics by:

8 The operators == (equal to) and != (not equal to) shall yield 1 if the
99 specified relation is true and 0 if it is false. If the operands have
900 types suitable for those of a relational .operator and values that would-
901 not cause undefined behavior if used with a relational operator, then . -
902 the result of the comparison, either greater than or less than (both
903 implying not equal to) or equal to, is the same as with a relational
904 operator. BN, ot L
905 insert at the start of the second paragraph:

906 Otherwise the operands are pointers, and they shall compare either
907 equal or not equal.
908
909 If part 3 is viewed as an issue, then in the same paragraph change:
910 or both point one past the last element of the same array object.
911 to: .
912 both point one past the last element of the same array object, or one
913 points one past the last element of some array object and the other
P14 points to the first element of a different array object.
915
916
017 Defect Report UK 021: Line numbers
918
019 The concept of "line number® is not clearly defined when a token is split
920 over more than one physical source line.
921
922 Subclause 6.8.4 reads in part:
923 || The line number of the current source line is one greater than the numbeTY
924 || of new-line characters read or introduced in translation phase 1 (521%51%2)
925 || while processing the source file to the current token.
926
527 Subclause 6.8.8 reads in part:
%8 || __LINE__ The line number of the current source line (a decimal constant).
»
930 Consider the program:
931
932 #include <stdio.h>
933
934 #define LNER __LINE 1
935 e St ; 013
936 /* The next statement is on physical source lines 6 to 8 */

1 3

et od. T s PN me 1 1Z2.45.17 1004 Page 13



psfiat mesee 1o CIIVESDRS

int east_coast = __\

LINE\

/* The next statement is on physical source lines 10 to 13 */
int main_line = L\

N\

E\

R;

int main (void)

{
printf ("%d %d\n", east_coast, main line);

return 0; r
}

In each of the two substitutions, it is unclear whether the line number is
the number of new-lines read to the *start of* the current token, or to the
*end of* the current token, or to a specified point within the current token.

What is the output of this program ?

Defect Report UK 022: Implicit conversions

The wording dealing with the usual arithmetic conversions contains a number
of errors:; while the correct meaning is usually clear, a strict reading of
the Standard shows some contradictions and/or unwanted side-effects.

Subclause 6.2.1.5 reads in part:

|| Many binary operators that expect operands of arithmetic type cause

|| conversions and yield result types in a similar way. The purpose is to
|l yield a common type, which is also the type of the result.

§§££§£E§§§§§EE¥§E§§EE£EEE£EE§§§§5

969
970 Subclause 6.3.15 reads in part: —
971 || The second operand is evaluated only if the first compares unequal to

972 || 0; the third operand is. evaluated only if the first compares equal to 0;

973 |] the value of the second or third operand (whichever is evaluated) is

974 || the result.

975 i1

976 Il If both the second and third operands have arithmetic type, the usual = i R

977 || arithmetic conversions are performed to bring them to a common type

978 || and the result has that type.

979 [eiaid

980 || in which case the other operand is converted to type pointer to void,

981 |] and the result has that type.

982

983 These citations have several defects:
* The relational and equality operators apply the usual arithmetic

984
085 conversions, but not to yield the type of result.

986 * The conditional operator ?: is not a binary operator, but is specified as
987 performing the usual arithmetic conversions.

988 * The concept of conversions applies only to a value; 6.3.15 is therefore
989 contradicting itself when it calls for both the second and third operands

to be subject to conversion when only one of them is evaluated.

* The value of the result of the ?: is not necessarily that of the second or
third operand, as the value may have been converted (possibly yielding a
different value).

In 6.2.1.5, change the cited sentences to:
Many operators cause the same pattern of conversions to be applied to
two operands of arithmetic type. The purpose is to yield a common type,

990
991

92

993

994

996 Suggested Technical Corrigendum

996

997

998

999

1000 which, unless explicitly stated otherwise, is also the type of the

1001 operator’s result. —~
1002

103 | In 6.3.15, change the cited wording to: --

1004 The second operand is evaluated only if the first compares unequal to

1005 0; the third operand is evaluated only if the first compares equal to 0; -

1006 the result of the operator is the value of the second or third operand () '(3

1007 (whichever is evaluated), converted to the type described below.

1008

Printed: Thu Dec 1 16:42:12 1994 Page 14



psiat ) file Iast modiified: .
Thu Dec 1 16:32:09 1994 C“VESD!

Line
1009 If both the second and third operands have arithmetic type, the type
1010 that the usual arithmetic conversions would yield if applied to those
—_ lon two operands is the type of the result.
1012 | R
1013 in which case the type of the result is pointer to void.
1014
1018
1016 | Defect Report UK 023: Correction to Technical Corrigendum number 1
1017
1018 | An example added by TCl is wrong.
1019
1020 | TC1l added the following example to subclause 7.9.6.2:
1021 || Add to subclause 7.9.6.2, page 138, another Example:
1022 11 In:
1023 11
1024 | || #include <stdio.h>
1025 | |1 VA SRR |
1026 11 int d1, 42, nl, n2, 1i;
1027 | || i = sscanf("123%, "%d%n%n%d", &dl, &nl, &n2, &d2);
1028 11
1029 11 the value 123 is assigned to dl and the value 3 to nl. Because %n can
w30 | || never get an input failure the value of 3 is also assigned to n2. The
1031 11 value of 42 is not affected. The value 3 is assigned to i.
1032
1033 This should set 1 to 1, not 3, as %n does not affect the returned assignment
1034 | count.
1035
1036 | Suggested Technical Corrigendum
037 | -------ccccrccrccecencccceae
1038 | In the example, change:
1039 The value 3 is assigned to i.
1040 to:
1041 The value 1 is assigned to i.
TN 1042
1043
104¢s | Defect Report UK 024: diagnostics for $#error
1045 :
146 | The rules concerning whether #error generates a diagnostic are contradictory.
1047
1048 Subclause 5.1.1.3 reads:
1049 || A conforming implementation shall produce at least one diagnostic message
wso | || (identified in an implementation-defined manner) for every translation
1051 || unit that contains a violation of any syntax rule or constraint. Diagnostic
1052 || messages need not be produced in other circumstances.
1053
1054 | Subclause 6.8.5 reads:
wss | || Semantics
1086 || A preprocessing directive of the form
1057 11 # error pp-tokens new-1line
1058 11 opt
1059 ]| causes the implementation to produce a diagnostic message that includes
1060 || the specified sequence of preprocessing tokens.
1061
1062 | Since this is not in a Constraints section, these two statements directly
1063 contradict one another. Furthermore, the second statement can be read as
ws4 | applying to a #error directive that is excluded by a false #if condition.
1085
1066 | Suggested Technical Corrigendum
1067 | =cccccececeecececccecccans
1868 | In 6.8.5, replace the entire subclause with: ‘
1069 Constraints
1020 A #error preprocessing directive shall not occur in a translation unit.
1071 Any diagnostic message generated because of the violation of this
o2 constraint [*] shall include the sequence of preprocessing tokens in the
1073 directive.
1074 [*] The intent of this subclause is that #error indicates that translation
1075 should fail. As stated in 5.1.1.3, a translation unit excludes lines
1076 within the "false™ side of #if...#else...#endif groups.
1077
1078
lo79 | Defect Report UK 025: preprocessing directives 0 :
1080

Printed: Thu Dec 1 16:42:12 1994 Page



sfiat file last modified: .
4 Thu Dec 1 16:32:09 1994 CllveSDRS

Line
1081 Preprocessing directives are not removed from the translation unit at

082 | any point Auring or after translation phase 4, and thus wreck the syntax

083 | analysis in translation phase 7. i
1084

1085 | Subclause 5.1.1.1 reads in part:

wss | || A source file together with all the headers and source files included

1087 || via the preprocessing directive #include, less any source lines skipped
1088 | || by any of the conditional inclusion preprocessing directives, is called
109 | || a /translation unit/.

1090

1091 | Nothing here, in the description of translation phase 4, or in subclause 6.8,
1092 | states that any preprocessing directive is removed (except for #include,

w93 | which is ®"replaced"). g

1004

1095 | Consider the source file:

1096 #define QUIT return 0

1097 #$if 0

1098 This is some junk

1099 $#else

1100 int main (void)

1101 {

1102 puts ("Hello world\n"):

1103 #endif

1104 QUIT:

1105 }

1106

1107 | The translation unit resulting at the end of translation phase 4 is thus:
1108 ##define QUIT return 0

1109 #if O

110 #else

111 int main (void)

mz2 {

1113 puts ("Hello world\n"):;

114 #iendif e
1115 return 0;

116 }

117

mse | and this clearly does not match the syntax of "translation-unit® in

1119 | subclause 6.7.

1120

1121 | Suggested Technical Corrigendum

1122 | ~=ccccccccemccccnccccccnccncacn

1123 | In subclause 5.1.1.2, add at the end of the description of translation

1124 | phase 4:

1125 All preprocessing directives are then removed from the translation unit.

Printed: Thu Dec 1 16:42:12 1994



