g on Purpose

orks so well.
r N 5

‘ntation

p people

s most people

s. Seldom do

t arithmetic.

/T, PLEER ]

Y paosronmIng o PYREOSE AR
ESS0vS onl SOFTAuinE TECHMLIET
PrenTICE WOl , 178,

4 The Central Folly
“

1’ learned a long time ago how to buy a television set. Sure, you worry

about how the picture looks on the demo set. And sure, you check that
it has all the gadgets you want. If you're sufficiently fastidious, you might
paw through recent issues of Consumer Reports to reinforce your current
prejudice. And if you care anything about decor, you might even note
whether the cabinet clashes with your beer-can collection. But that’s not
where the real action is.

What I learned to do, after I had convinced myself a given model was a
likely candidate, was to turn it around. On the back of nearly every
television set ever madeis at least one mysterious knob. It may be as modest
asascrewdriver hole giving you access to some inner trimpot. It may be as
grandiose as a knurled plastic gismo that more or less matches the knobs
on the front. But that knob is there all right.

The knob invariably has some arcane label. BUZZ is a nice blend of the
familiar and the ominous. FOCUS and VERT LIN are somewhat shopworn,
but still dependable entrants. AGC SYNC STABILITY is one of my all-time
favorites. Whatever the label says, you can be sure that it’s not something
that you really want to adjust. You'd be quite content for the television set
to give you its best shot at controlling the parameter in question and not
solicit your input on the subject.

There is a well known principle in drama that I like to think of as the
Pistol Principle. If you, the playwright, cause an actor to call attention to a
pistol in the top left-hand drawer of a Louis XIV desk sometime during Act
I then you’d better make sure that pistol gets used before the end of the
last act. Otherwise, you are guilty of intellectual clutter.

You can bet that whoever designed the television set you are about to
buy was just as sensitive to clutter as the most fastidious playwright. The
designer is not competing in the marketplace of ideas, to be sure, but in the
much tougher arena of consumer electronics. Those folks count tenths of a
cent (or yen, these days) when pricing the cost of parts and assembly, even
fora product that will retail in the hundreds of dollars. If there is a knob on
the back of your soon-to-be television set, it is there for a reason.

What the knob tells you is that the designer had to compromise. Some
part of the circuitry proved to be a little unstable, if not when the set was
new then after it had baked in for a few thousand hours, The designer might
have added more (or higher quality) components at a critical point, and

25

WG YN 776

X3ITW/ Y ~06]

19



g
g
i
I-é
i

S AR TARL

bz

TEE Sl

Ve

tral

26 Programming on Purpose

gone over the 17.3 cent budget for that subassembly. Or the designer might
have started over from scratch, to avoid the fundamental problems leading
to the instability, and risked delivering the design late (with a different
instability). Or the designer could simply bring a knob out to the back, for
that fine day when you discover you have to tweak the AGC SYNC
STABILITY to watch channel 13.

Guess which is the cheapest alternative.

I was pleasantly surprised to learn that I could evaluate computer
programming languages by much the same rules as television sets. No,
programming languages don’t have knobs on the back. But they do have
the moral equivalent thereof.

very programming language comes with a reference manual, at least,
@and one or more tutorials, at best. That documentation should tell you
all you need to know about the language to put it to use. If it doesn't tell
you enough, you're reduced to performing experiments on the current
translator you happen to own. Or you switch to another language. If it tells
you too much, you are too overwhelmed to get your bearings. Program-
ming languages are among the most complex creations that a single person
has to do battle with these days. The last thing you need, when mastering
a language, is extraneous detail.

Intellectual clutter in a programming language is just as fatal as over
engineered circuitry in mass-market electronic appliances. It can price you
out of the market. You can bet that an earnest language documentor tells
you only what you need to know. The knobs are kept to a minimum.

So when I evaluate a programming language, I look for the extra knobs
sticking out the back. When I see pages and pages of discussion about how
to deal with something that I don’t care about, I've found the knob. If I can't
relate the discussion to the problem I want to solve, then I know I'm being
asked to work around a design compromise in the language. Sooner or later,
I'm going to have to learn how to tweak that mysterious knob to get the
results I want.

The mere presence of a lengthy and arcane discussion in a language
tutorial tells me that the designer couldn’t eliminate the compromise. The
language was in danger of becoming even more complex, or of being late
to market due to redesign. The cheapest way out was to try to explain the
compromise, rather than eliminate it.

I call this compromise “the central folly.” It lies at the heart of the
language design, and it is arguably a fundamental mistake. Someone made
a conjecture, early on in the design process, and had to stick to it. And later
came to regret it.

With that lengthy preamble, I am now ready to introduce my (second)
annual April Fool’s essay. By long-standing tradition, I take this opportu-

aaroring e

Essay 4

nj* 9 ¢
t(\ a
Mu.g la;
bay — T

3" have
its e>
Anyway
benign
COBOL
of Syste
scientifi
ming la
issues, t
Iamc
that the
they cou
four.
PL/I
encoded
® binar
m fixed-
® realo
® varion

You c:
and =it
pPc
oni, _.te

It was
supporte
and min
interacte

he ot
After
wanted e
Permeati
shouldn’
specify it
One as
PL/I. (FC
write a k
guess the
barbarisn



urpose

7T\t
. 8
ferent
2k, for
SYNC

1puter
s. No,
> have

: least,
1l you
a’t tell
urrent
it tells
gram-
rerson
tering

s over
ce you
r tells
.
knobs

W

/t
.being
rlater,
et the

guage
ie. The
g late
in the

of the
»made
d later

2cond)
portu-

tsay4 The Central Folly 27

nity to savage other designers, in the thin disguise of good clean fun. My
topic this time, as you must have guessed by now, is computer program-
ming languages. And I intend to snipe at three of the biggest ducks in the
bay — PL/I, Algol 68, and Ada. Are you ready?
1’ have this vision of how PL/I came into being. No, I don’t really know

its exact history, so I won't pretend to anything other than fantasy.
Anyway, I imagine a committee forming in the early 1960s, under the
benign guidance of IBM. On that committee are numerous FORTRAN and
COBOL programmers. All are determined to make a new language worthy
of System /360, one that will combine the best points of the most popular
sdentific programming language and the most popular business program-
ming language. Each is willing to compromise on many broad design
issues, provided his or her three favorite features go in as well.

Iam convinced that PL /I was designed by a committee of users. I suspect
that the only serious arguments they had while piling on all the features

they could imagine was whether there was room for three kitchen sinks or
four.

PL/I supports every data type you can imagine, and then some. For

encoded values, you can choose any combination of:

8 binary or decimal base

8 fixed-point integers, fixed point with a scale factor, or floating point
8 real or complex

8 various precisions

You can also specify character strings, with or without an editing picture,
and bit strings. In the early days, you could even perform arithmetic in
pounds, shillings, and pence! (PL/I dropped Sterling fixed-point constants
only after the British empire did.)

It was an interesting conjecture that you needed all of those data types
supported directly in the language, if you were going to capture the hearts
and minds of all of those FORTRAN and COBOL programmers. But that
interacted with another conjecture to cause a few problems.

mhe other conjecture was that the language must be blindly subsettable.
After pouring in features from two distinct cultures, the designers then
wanted each culture to be able to use PL/I without learning about the other.
Permeating the language design is the attitude, “What you don’t know
shouldn’t hurt you.” Every option should have a default. If you fail to
specify it, the translator will guess what you probably intended.

One aspect of this conjecture is that keywords are not reserved names in
PL/1.(FORTRAN has no reserved names, COBOL has tons of them.) If you
write a keyword in a context where it is not expected, the translator will
guess that you intend it to be an ordinary name. That attitude permits
barbarisms such as:

1Y)



28 Programming on Purpose

IF IF = THEN
THEN THEN = ELSE
ELSE ELSE = IF

which ascribes two distinct meanings to each of IF, THEN, ELSE, and the =
operator. But what the heck. Any tool can be abused.

nother aspect of this conjecture is that you can write an expression with
gnearly any combination of data types. Many FORTRAN programmers
enjoyed being able to mix integer and floating-point types, and let the
translator guess how to combine them sensibly. Why not bring this luxury
to the richer world of PL/I data types? The result is that the language
explainers had to write pages and pages describing what happens when
you combine REAL FLOAT DECIMAL operands with bit strings and Ster-
ling fixed-point constants.

There’s the knob on the back of the set.

Life is interesting enough with FORTRAN. If you convert a REAL to an
INTEGER, implicitly by assignment, the translator guesses that you want
to truncate the result toward zero. Rounding is often a better idea. If you
convert an INTEGER to a REAL, the translator guesses that any low-order
bits lost in the process are not worth mentioning. Reporting a loss of
significance can sometimes be important. Nevertheless, the number of
questionable conversions in FORTRAN is small and easily learned. The
conscientious programmer learns when to be careful, or to use the explicit
conversion functions.

PL/I, however, offers boundless opportunities for the translator to think
up questionable conversions. My favorite eyebrow raisers usually involve
some sequence that takes you from a DECIMAL form, through a bit string,
to a single bit that you want to test. Picking up a meaningless leading zero
bit along the way, that you eventually test instead of the good stuff, is
frighteningly easy.

Things would not be so bad were programmers educated to write
explicit conversions, but such is not the case. Part of the culture of PL/], as
I'have seen it practiced, is that real programmers never write anything that
doesn’t have to be specified. (Imagine taking your favorite large Pascal or
C program, erasing all of the conversion functions and/or type casts, and
expecting the translator to guess how to put them back.) Getting the
expressions right in the first place is hard enough, but maintaining PL/1,
to me, often resembles tweaking a knob whose effect I don’t understand.
ﬁly vision of the origins of Algol 68 also begins in the early 1960s. Again

I see a committee, this time composed of numerous language theo-
rists. All share a love for the elegant orthogonality of Algol 60 and a zeal
for making a successor that will be even more elegant and even more
orthogonal. All have lots of interesting ideas about how to specify a

Essay 4 The Cer

prograr g
must h: k
underlying pri

I understan
language calle
was eventually
to schedule o

committees mc

The cute thi
ing a language
68itselfhasag
that on a four-s
all of the produ
Why the comr
describe the m

Digging thr
“stirmly hippi
understanding
assignation is !
sapping throug
law against qu
reference mant

Algol 68 lets
have grown a
variables" in Al
ing.Call 4
ing. All1 Ry
mhe designe

concluded

expression, the
points to anoth
contents of that
if you are assi
Similarly, if a v:
probably want
expression. An

Sure, you ca
mean. But you
pages of expla
context (strong,
sion. There is e
page, that ende




PUrpose

d the =

yn with
mmers
let the
luxury
nguage
s when
\d Ster-

L to an
u want
. If you
v-order
loss of
nber of
>d. The
explicit

o think
nvolve
- st=ing,

ro
5., 1S

O write
’L/1, as
ing that
ascal or
sts, and
ing the
g PL/],
stand.

.. Again
-e theo-
1 a zeal
n more
recify a

tsay 4 The Central Folly 29

programming language. Here, the major concern is whether the language
must have a kitchen sink, per se, or whether you can construct one from
underlying primitives.

I understand that the working goal of the committee was to make a
language called Algol 64. At least through the end of 1964. The fact that it
was eventually called Algol 68 tells us that theoreticians are not immune

to schedule overruns either. But what the heck. We're all human, and
committees move slowly.

The cute thing about Algol 68 was that the committee ended up invent-
ing a language to describe the language that describes the language. Algol
68itself has a grammar with an infinite number of productions. (Try writing
that on a four-sided reference card.) You need a meta-grammar to produce
all of the productions that produce all of the valid sentences of the language.
Why the committee felt it necessary to retread the English language to
describe the meta-grammar, however, is beyond me.

Digging through pages of jargon about “softly deproceduring” and
“stirmly hipping to void” is off-putting in the extreme. It is a real barrier to
understanding. True, you occasionally unearth a real gem such as, “An
assignation is the commonest form of confrontation.” But it's not worth
sapping through all of the mud along the way. There should probably be a
law against quoting Lewis Carroll or W.S. Gilbert in a computer-language
reference manual.

Algol 68 lets you declare all sorts of pointer types, a luxury to which we
have grown accustomed with Pascal and C. They are called "reference
variables” in Algol 68. Accessing a variable via a pointer is called dereferenc-
ing. Calling a function, given its name or a pointer to it, is called deprocedur-
ing. All fine and good.
ahe designers made an interesting conjecture early on, however. They

concluded that if you merely mention the name of any variable in an
expression, the translator should know what to do with it. If a variable
points to another variable, you probably want to dereference it to get the
contents of that other variable. You only want to copy it as a reference variable
if you are assigning it to another reference variable of the same type.
Similarly, if a variable names a procedure that has no arguments, then you
probably want to deprocedure it, or call it, when you mention it in an
expression. And that’s always the case. Except when you don't.

Sure, you can also decorate the names with operators to say what you
mean. But you don’t have to. Instead, the description of Algol 68 contains
pages of explanation about how the translator guesses what to do from
context (strong, firm, weak, or soft) and from the type of each subexpres-
sion. There is even a wonderful railroad-track diagram, filling over half a
page, that endeavors to teach you how to second guess the translator.




30 Programming on Purpose

Have you spotted the knob on the back yet?

To fully appreciate the effect of this conjecture on the description of Algol
68, you have to repeat the gedanken experiment I suggested above. Take
your favorite Pascal or C program and erase all of the indirection operators
(* or *) and all of the empty parentheses. Now explain simply how the
translator should put them all back.

y view of Ada goes back about a dozen years. I imagine a committee
MOf university consultants forming, under the benign guidance of the
U.S. Department of Defense. On that committee are people who fund their
research courtesy of the U.S. government. To this attentive audience, the
DOD poses a challenge.

We're going to give you some money to study the state of the art of computer
programming languages, says the DOD. We want you to look at what everyone
else has done in the way of program design and determine whether:

® they have already done a better job than Yyou can possibly do in designing a
programming language

m we should give you lots more money to spend the next several years designing
the programming language you've always dreamed of

You can guess the result.

No, I'm not going to make snide remarks about gold-plated kitchen
sinks, or savage Ada in the usual ways. I believe that the people who
worked on Strawman, Ironman, Steelman, and the various color-coded
candidate languages had good intentions and did the best jobs they could,
under the circumstances.

What I'm saying is that the deck was stacked, by those circumstances, in
favor of yet another language designed by committee. Even though Jean
Ichbiah gets full and proper credit for bringing considerable coherence to
the design of Ada, he was in many ways hobbled by an over detailed
specification, produced by a committee.

Ada was specified from the start to be a language in which you can write
really large programs. It assumes that a typical program will be constructed
from multiple modules written by different people. As a consequence, it
worries quite a bit about name-space control. Lots of thought was given to
controlling just what names are visible at any given point in an Ada
program.

Opposing this concern, however, was an important conjecture — that
the types and operators of Ada should be extendible. You should be able
to introduce, say, the flavor of complex numbers that you like best, and
extend the meaning of all the sensible arithmetic operators to cover them.
You can, in other words, overload the meaning of the operators plus and
minus, for instance, to cover complex operands as well.

Essay4 Th

¢ 2

A
differentr
other lan;

introduce
notation f

When
space con
to have to
module th
able to op:
unqualifie
interesting
the 23 mox
three of th

What y
and other
how the tr
define mu
seems to k
then it mu
thinks bes:

There’s

To me, |
with it O
sper )Y

o>
to

val
until the tr
minimum
away. But1
Nor is it th

he poin
ma conje
designer w
too much.
Wirth (Pasc
favor of lir
however, it
future user
on the com



o0se

i'ake
tors
the

ttee
the
aeir
the

ing

1en
‘ho
led
1d,

-

ed

ite
ed
. it
to

at
le
d

d

Essay 4 The Central Folly 31

verloading operators is certainly a convenience. N early every language
@I can think of lets you write a plus operator in ways that have quite
different meanings, depending upon the typesof its operands. Algol 68 and
other languages let you extend the overloading to cover types that you
introduce as well. You can write programs that have a very agreeable
notation for performing new forms of arithmetic.

When overloading and extendibility meet up with heavy-duty name-
space control problems, however, you can expect complexities. It’s no fun
to have to qualify every plus operator, for instance, with the name of the
module that is providing the appropriate definition. Rather, you want to be
able to open up a module, as it were, and dump its contents into the general,
unqualified name space. That’s fine if you have only one module adding
interesting new meanings to the plus operator. But what happens if ten of
the 23 modules you are using overload plus in different ways? (Or what if
three of these overload it the same way, which is different from the others?)

What you can do with operators, you can also do with function names
and other creatures. Ada tutorials devote pages and pages to explaining
how the translator can guess which meaning to ascribe to a name that you
define multiple ways in the same region of program text. The basic rule
seems to be, “If the translator has any chance at resolving the ambiguity,
then it must permit the ambiguity and endeavor to resolve it the way it
thinks best.”

There’s the knob on the back once again.

To me, this is like taking the WITH statement of Pascal and going wild
with it. Or perhaps it can be compared to erasing as many structure
specifiers from a C program as you can, changing

pP->e.o.left->val = x.z;
to
val = z;

until the translator begs for mercy. It might be interesting to start with the
minimum number of qualifiers, then add them until the diagnostics go
away. But that probably isn’t the most productive use of programmer time.
Nor is it the most maintainable code.

mhe point of all of these gripes is the same. A language designer may have

a conjecture about how people plan to use a language. Chances are, the
designer will fear that a language will not be used if the user has to specify
too much. When the designer is a single, gifted person such as Nicklaus
Wirth (Pascal) or Dennis Ritchie (O), he or she can often arbitrarily rule in
favor of linguistic simplicity. When the designer is part of a committee,
however, it is harder to rule arbitrarily against the putative desires of the
future user community. Particularly when there are vocal potential users
on the committee.

e aran e A S s aen s dve o poe e G e e o



32 Programming on Purpose

I have characterized the conjectures in each of the three languages in
terms of what guesses they require of the translator. It is my belief that
high-level language translators have their hands full diagnosing obvious
errors and optimizing for less-than-optimal computer architectures. They
should not be asked to guess, particularly where a simple word to the wise
from a programmer will make their job easier, and the program more
readable. You will notice that two of the most successful languages of the
past decade, Pascal and C, offer little in the way of shorthand in the areas
I have discussed.

Ibelieve that each of the three languages I've taken to task are important
languages. I believe that each has many good design features. They have
certainly influenced many others, usually to advantage. I have certainly
learned many useful principles from studying all three.

Each bears the marks, however, of committee design. Each could be
made stronger, I believe, by being asked to do less. And each is hampered
by a central folly that causes you to tweak knobs better left hidden. o

gftcrword: Rarely does a complex design avoid a central folly. Try your hand at
spotting the central folly in UNIX, MS-DOS, C, and C++, just for practice.
Learning how to spot such lapses in others can help make you a better designer. The
sooner you twig to your own lapses, the better chance you have to mitigate them.
At the least, being alert to central follies can make you more tolerant.

3. Ifa2
it D]
4. If 2
(cal
5. Oitl
sent
Mr.
enoug]
sentati
whethe

can tes
failed «

DMIN a
machin



