WEIYINIEE
x2Tr /=053

Why both C and C++ standards are necessary

C++ started life as a language designers experiment with something later to be called object
oriented programing. The use of an existing language, C, as both a basis from which to
create a new language and as the high level assembler into which C++ was translated was
seen as having many advantages. This, original, close association has resulted in the two
languages becoming intertwined in the publics mind.

The original driving force behind C was the feeling that languages ought to be small, easy
to implement and produce efficient code. It was, to some extent, more influenced by the
hardware of its day than some high level software design methodology.

The concept of object oriented programing is still only a few years old. Because of this there
has been very little practical experience in designing and building applications based on this
methodology. Knowledge on how to design languages, to support such designs and
implementations, lags even further behind.

Through-various influences C++ has become a large complex language. Its priority being
to make life simpler for the software developer in the creation of reusable libraries and
competitive applications (that is large applications containing a lot of functionality).

C is a small language. Its users often view efficiency and the ability to get close to the
hardware as being important. As such the language does not contain any constructs that

might unexpectedly impose a high runtime overhead or be difficult to map onto the
commonly available hardware.

Many software developers have moved from C to C++. There are many reasons for this
shift. Ishall leave it to future historians to document why this moved occurred.

With the C standard soon due for reconsideration it is necessary to address the belief that
the two languages are seen as being strongly connected to each other.

The C panel has discussed its relationship with C++ several times. The it has always

unanimously agreed that the two languages are connected, but separate. Each deserving
their own standard.

The reasons for this are as follows:

1) C is a small language, capable of generating efficient code. This makes it very

suitable for use in embedded system, where generated code size and quality are
important issues.

C panel report to IST/5 Page 1 3



2) Innumber crunching applications speed is very important. C currently looses out
to Fortran in the degree to which it can be optimised. This issue is being addressed
by the ANSI Numerical C Extensions Group. Itis expected that with suitable minor
additions to the languages it will be able to compete with Fortran in compute
intensive areas.

3) C++ is a large language with a lot of hidden runtime overheads. It can be very
difficult to predict what code might be-generated for use of relatively simple
constructs in the source.

4) The C++ standardisation effort is learning that some of the early language design
decisions, taken with C compatibility in mind, are having an adverse effect on the
creation of a coherent C++ language. In order to best serve the community of C++
users WG21 may decide to make further fundamental changes. Any attempt by
WG14 to mirror such changes, to accommodate a view of the world that C does
not have is likely to lead to significant compatibility problems with existing code.

5)--The view that C is currently a true subset of C++ is not correct. C++ has evolved
and continues to evolve away from C. That this view has common currency has
more to say about the state of the average programmers knowledge of the two
languages than about what is contained in the two defining documents.

At its last panel meeting the committee discussed what it saw as the future of C. It was felt
that there should be some additions to the language to aid its role as a high level assembler.
Perhaps also some minor changes to accommodate C++, where there was little likelyhood
of breaking existing code. It general it was agreed that C should stay as a small language
and that nothing was to be gained by merging it into C++.

C panel report to IST/5 Page 2

6



