Future Directions For C

Francis Glassborow, ACCU Chair
64 Southfield Road
Oxford, 0X4 1PA
UK

francis@robinton.demon.co.uk

In considering specifications for the work undertaken to
develop the next version of ISO C we should take into
account the ’Spirit of C°’.

As I understand it, one primary intention shared by all
those involved in development to date has been to provide
effective mechanisms for programmers to express their
solutions in terms that are as portable as possible
across a wide range of machine architectures. At the
same time the resulting code should be efficient while
supporting the maxim that ’'programmers know what they are
doing.’

If the next version of C is no more than a number of
relatively minor developments and additions based on the
same ’'ideal machine’ that the current version is based on
it will fail to support the ’Spirit of C’ becuase it will
not support the programmers of the early decades of the
twenty-first century express ‘their "intentions to the
machine architectures that will then be common.

By then, array processors and other forms of parallel
processors (both SIMD and MIMD) will be generally

available. In such an environment C should provide
language elements to enable programmers to express their
intentions and responsibilities for using multiple
threads. Currently all C must be compiled to behave ’as
if’ it 1is running as a single thread on a single
processor. Quite apart from this placing a substantial

burden on the flow analysis capacity of a compiler
compiling to use more extensive resources it also con-
fines programmers to using single thread algorithms which

may be ©poor choices when parallel processors are avail-
able.

C is sometimes described as a powerful, high level,
portable assembler. There 1is more than a modicum of
truth in this description which explains its power in a
number of problem domains that it has made almost
exclusively its own. If C is to continue to serve as a
’portable, high-level assembler’ it will need to add
support for the coming generations of machine
architectures. Time spent on largely cosmetic
improvements to the language will be time wasted because
such a language will not meet the needs of programmers
and so will justifiably die.

WGIY M 36)
3TN/ G- 03



