N6 4
94-047

Subject: Comments on complex vs imaginary types for C

I wish to strongly support the introduction into the programming language C
of a type imaginary, rather than a Fortran-like type complex. The essence of
my argument is that experience with Fortran has shown that the representation
of complex numbers by a pair of adjacent floating point values is too
restrictive, and consequently in areas such as signal processing where
substantial computation with complex arithmetic arithmetic is done,

the complex data type in Fortran is almost never used - the arithmetic

is simulated with reals, as would be done in languages such as Ada or current C
which do not directly support complex arithmetic. Yet appropriate language
support, i.e. type imaginary, would make programs easier to produce, would
make them easier to read, and arguably might make generation of better code
possible. The examples below all have difficulty with Fortran-like
representation, and all have no difficulties when real and imaginary are

separate types.

There are basically two problems with the Fortran representation. First, it

is not always convenient that the two floating point numbers making up the
real and imaginary parts lie at adjacent addresses in memory, Second,
although abstractly values may be complex, in fact it is very often desirable
to take advantage of the fact that in special cases these values may be
provably real, or imaginary, or exist in complex conjugate pairs, etc.

Not only does this facilitate saving storage space and computation time,

but it may be essential to preserving properties that might be accidentally
lost by roundoff or algorithmic approximation. Preserving and exploiting these
spedial cases typically involves treating the real and imaginary parts of a
complex value separately. This is awkward to do with selectors accessing the
parts of complex number.

As a simple example where storing an array of complex numbers, represented
as pairs, is not convenient consider a Hermitian matrix. This kind of matrix,
arising commonly in physics, has the property that it is its own Hermitian
transpose, ie that the elements of the transpose of the matrix are the complex
conjugates of the elements of the original matrix. Only half of the off diagonals
thus need to be represented. Moreover, the diagonal must be real, thus making
it possible to save the N locations that would be occupied by the imaginary
parts that are known to be zero. If the redundant parts are explicitly
represented, and if the Hermitian transpose property is accidentally lost,

say through roundoff, then the related property that the matrix is positive
definite, i.e. that the eigenvalues are real and indeed positive, will also be

lost.

A more significant example concerns the finite Fourier transform of a sequence
of real data. This transform has the property that it is Hermitian symmetric,
i.e. that the Fourier coefficient f(t) is the complex conjugate of the Fourier
coefficient f{(N-t). This implies f(0) is real, and if the sequence is of finite

173

length N which is even, then f(IN/2) is real. Starting from a real sequence of
N values, the independent information computed by the Fourier transform are
the N values £(0); Re(f(k)),k=1..(N-1)/2, Im(f(k)) k=1..(N-1)/2, and f(N/2)

if N is even. Conseqently the amount of storage is conserved: the transform
can be done in place. If, however, f(0) and f(N/2) must be represented as
complex number pairs, then the storage requirement increases. The practical
importance of this can be seen when the Cooley version of the FFT is applied
to a sequence of real data. At each stage, the Cooley version of the FFT can

be described as combining the Fourier transforms of subsequences of the
original sequence to give the Fourier transform of the combined subsequence;
eventually this leads to the Fourier transform of the original sequence. Each
subsequence is of course real, hence each intermediate Fourier transform

is Hermitian symmetric and can be done in place if no redundant storage is
used, ie if only the independent information noted above is stored. The
subscript values required for indexing are simplest if imaginary parts
Im(f(k)) are stored at location N-k in the array; in particular the subscript
values required if an vector of complex values is used and redundant

storage is avoided is much more complicated that "bit-reversed” indexing
conventionally used with FFT's.

Despite all the work since that time, (including the advent of the language C),
little has changed since these issues were discussed in 1970 at the Fourth
Annual Princeton Conference on Information Sciences and Systems in a
session on the Use of Complex Arithmetic in Numerical Analysis.

Papers included:

Jenkins, M.A. "The advantages and Disadvantages in Using Complex
Arithmetic in Polynomial Zerofinding", pp129-132.

Businger, P.A. "Using and Avoiding Complex Arithmetic in Linear Algebra”,
pp133-135.

Sande,G. "Fast Fourier Transform - a Globally Complex Algorithm with Locally
Real Implementations”, pp 136-142.

Kahan, W. "Where does Laguerre's Method come from?", pp143-145.

Some quotes are appropriate:

"It is quite natural to consider the solution of polynomial equations as a problem
in the complex field and to program algorithms entirely in complex arithmetic.
However, most polynomials solved in practise have real co-efficients and there
exists efficient algorithms for real polynomials which use no complex
arithmetic.

... A comparison is made which shows that the algorithm for real polynomials is
considerably more efficient than the algorithms for complex polynomials.
However, the complex algorithm is simpler, easier to analyze and somewhat
more reliable." (Jenkins)

"The issue of whether to use or avoid complex arithmetic in linear algebra

arises with problems whose data or solutions are complex. While it is possible

174

to avoid complex arithmetic even when data as well as solutions are complex,
using complex arithmetic in such cases is more economical. An instance of
complex data leading to real solutions is given by the Hermitian eigenvalue
problem. In the interests of efficiency the computation can be arranged such
that a significant part of the work is carried out in real arithmetic. In the

case of the real nonsymmetric eigenvalue problem, real data in general lead
to complex solutions. Avoiding complex arithmetic in this case also leads to

a gain in efficiency."(Businger)

"We may now ask why [good] Fourier transform programs do not use complex
types. At the arithmetic level the answer involves the statement 'multiplying
by i is not efficient'. We also find other special constants and combinations of
interest. Good Fourier transform programmes are a thorough study in
exploiting the special properties of the complex exponential....Thus we find
that, locally, complex arithmetic is expensive and that, globally, complex data
types are inappropriate.” (Sande)

"What lessons have we learned which we might apply in the future when
specifying new languages. Complex constants may be of special form and this
should be acknowledged. This is very important in this algorithm and is
important in many other situations. There is a difference between the notions
of complex array and array of complexes. For this algorithm it matters
crucially.” (Sande)

Extensions of some of the ideas in Sande's paper to related problems, as well
as other similar techniques, appear in:

W.M. Gentleman, "Using the Finite Fourier Transform", Computer Aided
Engineering, Study No. 5, (edited by G.M.L. Gladwell) Solid Mechanics Division,
University of Waterloo, Waterloo, Ontario, pp. 189-205, 1971.

W.M. Gentleman, "Implementing Clenshaw-Curtis Quadrature II, Computing the
Cosine Transform", Communications of the ACM, Vol. 15, No. 5, May 1972,

pp. 343-346.

W.M. Gentleman, "Algorithm 424, CCQUAD - Clenshaw-Curtis Quadrature”,
Communications of the ACM, Vol. 15, No. 5, May 1972, pp- 353-355.

Date: 8 Jun 1994 18:20:10 U

From: "Gentleman" <Gentleman@iit.nrc.ca>
Subject: Comments on complex vs imag

To: "Jim Thomas" <jim_thomas@taligent.com>

I'is

