
C2y, proposal N3602 - Phrase bool as bool 1

Author: Javier A. Múgica

Purpose: Integration of existing features

Date: 2025 - june - 22

This paper proposes a rewording of the semantics of certain operands, replacing com-

parison to zero by the more natural conversion to bool.

It modifies N3546 in that it states explicitly that the operands of !, AND and OR are con-

verted to bool and in that it keeps the example in the “if” statement that N3546 proposed to

remove. It also adds some wording for conversions to and from bool for the preprocessor.

Analysis

Take for example the specification of the logical OR operator:

The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise,
it yields 0. The result has type int.

This text was written when only numbers (integers and floating-point) and pointers could

be its operands.What it meant was that “is not zero (for arithmetic types) or not null (for point-

er types)”. Instead of plainly saying this, it takes the roundabout of expressing it via compar-

ison against zero. Thereby the description is shorter, and back then comparison of pointers

against a literal zero was more common than is today.

Years have passed; comparison of a pointer against zero has become questioned and,

although that possibility may never be removed, phrasing nowadays “the value is not null” as

“compares unequal to 0” does not seem a good choice.

More important, the types bool and nullptr t have been added, making the description via

comparison against zero more complicated than it was when it was originally written. (Thrice

as complicated, wemay say, since besides numbers, the other types do not compare naturally

to a number, zero included).

Curiously, the description of the assert macro uses the word “false”, but insists in compar-

ing to zero: “[...] is false (that is, compares equal to 0)”. This clearly predates the introduction
of the constant false.

Wemay compare those wordings with the wording for conversion to bool, which is newer:

When any scalar value is converted to bool, the result is false if the value is a zero (for
arithmetic types), null (for pointer types), or the scalar has type nullptr_t; otherwise,
the result is true.

This is the natural way to express it. Further, comparison of nullptr against zero hangs
on a very slender thread: In contrast to pointers, that can be naturally represented as an inte-

ger, and compared to any integer if one is cast to the type of the other, as in p == (void*)1
or (uintptr_t)p == 1, whereby the lack of need of a cast for the constant 0 is just a shortcut,
nullptr cannot. It can be compared against zero not because nullptr can be transformed

to an integer or vice-versa, but because comparison to a null pointer is allowed for it.

Instead of repeating the words used for describing conversion to bool, we can take advan-

tage of their existence there, to phrase the semantics of those operators based on it, on the

C2y, proposal N3602 - Phrase bool as bool 2

conversion to bool of their operands. This is how these operators are universally described:

“the result is true if any of the operands is true”, for example, for the OR operator.

We have not modified the wording for static assert, where it should plainly say “with a

nonzero value” (the expression has integer type), because there is already a proposal fixing

that (static assert without UB).

NaN

The text in the standard for conversion of arithmetic types to bool specifies that any value
other than zero converts to true. For the new wording to match the current behaviour, it is

needed that NaNs compare unequal to zero. The standard already imposes, with respect to

the == and != operators, that “For any pair of operands, exactly one of the relations is true”.
Althought it does not mention which one of the two is true when one of the operands is a

NaN, given that a NaN is a value different from zero, we understand the wording as implying

that NaN == 0 is false. (Just as it is implied that 1 != 0 without any need to an explicit mention

that for finite values the relation == is true if the values are the same). The more since even

the expression x == x is false if x is a NaN (in ISO/IEC 60559).

Even if one forced the standard to read that NaN == 0 can be true, the present wording

would change an unspecified behaviour by a specified one (but we don't think that reading

is acceptable).

Side effects

There is an improper use of “shall be” in “The || operator shall yield 1 if... ”, and analo-

gously for the && operator. In the new wording we use “is”.

We also fix a mistake in the wording of the logical AND expressions: “The && operator shall
yield 1 if both of its operands compare unequal to zero”. Consider 0 && 1/0. Here the second
operand cannot be compared to zero.

Wording

Unary arithmetic operators (6.5.4.4):

5 The logical negation operator ! converts its operand to bool; then negates it (the negation of
false is true, the negation of true is false), then converts the result to int. The result has
type int.†

Logical AND operator (6.5.14):

Semantics

3 The first operand is converted to bool. There is a sequence point after this conversion. If the
result of the conversion is false the second operand is not evaluated; otherwise, the second
operand is converted to bool. If any of the conversions result in false, the result of the AND
expression is 0; otherwise, it is 1. The result has type int.

† If we represent by¬ an operator interchanging true and false, the expression !E is equivalent
to (int)¬(bool)E.

C2y, proposal N3602 - Phrase bool as bool 3

Logical OR operator (6.5.15):

Semantics

3 The first operand is converted to bool. There is a sequence point after this conversion. If the
result of the conversion is true the second operand is not evaluated; otherwise, the second
operand is converted to bool. If any of the conversions result in true, the result of the OR
expression is 1; otherwise, it is 0. The result has type int.

Conditional operator (6.5.16):

Semantics

5 The first operand is evaluated and its value converted to bool. There is a sequence point after
this conversion. If the boolean value is true, the second operand is evaluated; otherwise, the
third operand is evaluated. The result is the value of the second or third operand (whichever
is evaluated), converted to the type described subsequently in this subclause.

The if statement (6.8.5.2):

Semantics

2 The controlling expression is evaluated and converted to bool. In both forms, the first sec-
ondary block is executed if the result of the conversion is true. In the else form, the second
secondary block is executed if the result is false. If the first secondary block is reached via a
label, the second secondary block is not executed.

EXAMPLE 2 The conversion to bool of the controlling expression may have side effects:

double x = DBL_SNAN;
if (x) {

// fetestexcept (FE_INVALID) is nonzero because of the conversion
}

Iteration statements (6.8.6):

Semantics

3 An iteration statement causes a secondary block called the loop body to be executed repeatedly
until the value of the controlling expression is false when converted to bool. The repetition
occurs regardless of whether the loop body is entered from the iteration statement or by a
jump.

The for statement (6.8.6.4):

2 Both clause-1 and expression-3 can be omitted An omitted expression-2 is replaced by true.

Also, in the text of the footnote immediately preceeding this paragraph, replace “compares
equal to 0” by “is false” (no fixed-wdith font).

Preprocessor conditional inclusion (6.10.2):

Add a new paragraph:

15 The operators !, &&, || and the conditional operator convert their operands, or some of them,
to bool (6.5.4.4, 6.5.14, 6.5.15 and 6.5.16). Any nonzero value is converted to true and zero is
converted to false. Of these, the ! operator converts its result back to a signed integer. The
value true is converted to 1 and the value false is converted to 0.

C2y, proposal N3602 - Phrase bool as bool 4

The assert macro (7.2.2.1):

Description

2 The assertmacro puts diagnostic tests into programs; it expands to a void expression. When
it is executed, if the value of expression (which shall have a scalar type) is falsewhen con-
verted to bool, [...]

