X3J11 Technical Report — WG14/N357 X3J11/94-042
Compound Literals

David Prosser (dfp@summit.novell.com)
David Keaton (dmk@dmk.com)

1. Introduction

1.1 Purpose

This document specifies the form and interpretation of a pure extension to the language portion of the C stan-
dard to provide important additional flexibility to literals in expressions.

1.2 Scope

This document, although extending the C standard, still falls within the scope of that standard, and thus fol-
lows all rules and guidelines of that standard except where explicitly noted herein.

1.3 References
1. ANSI X3.159-1989, American National Standard for Information Systems — Programming Language — C.
2. ISO/IEC 9899:1990, Programming Languages — C.
3. WGI14/N356 X3J11/94-041, X3J11 Technical Report— Designated Initializers.

All references to clauses of the ISO standard and to sections of the former ANSI standard will be presented in
pairs. For example, subclause 6.4 or §3.4 references constant expressions.

2. Language
2.1 Compound Literals

The syntax, constraints, and semantics for postfix-expression (subclause 6.3.2 or §3.3.2) are augmented by the
following:

Syntax

postfix-expression:
(type-name) { initializer-list }
(type-name) { initializer-list , }

Constraints
The type name shall specify an object type or an array of unknown size.

No initializer shall attempt to provide a value for an object not contained within the entire unnamed object
specified by the compound literal.!

If the postfix expression occurs in any context other than within the body of a function, the initializer list shall
consist of constant expressions.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of initializers
is known as a compound literal. It provides an unnamed object with value given by the initializer list.2

If the type name specifies an array of unknown size, the size is determined by the initializer list as specified in

1. This is the “There shall be no more initializers...” constraint modified to take into account designated initializers (see
reference document number 3). / - 5
21

2. X3J11 Technical Report — Compound Literals

Compound Literals 2 Language

subclause 6.5.7 or §3.5.7, and the type of the compound literal is that of the completed array type. Otherwise (when
the type name specifies an object type), the type of the compound literal is that specified by the type name. In either
case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list. The object has
static storage duration if and only if the postfix expression occurs in a context other than within the body of a func-
tion; otherwise, it has automatic storage duration associated with the enclosing block.

Except that the initializers need not be constant expressions (when the unnamed object has automatic storage
duration), all the semantic rules and constraints for initializer lists (subclause 6.5.7 or §3.5.7) are applicable to com-
pound literals.> The order in which any side effects occur within the initialization list expressions is unspecified.*

String literals, and compound literals with const-qualified types, need not designate distinct objects.’
Examples
The file scope definition
int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four.
The expressions in this compound literal must be constant. The unnamed object has static storage duration.

In contrast, in

void £ (void)
{
int *p;
L% o0 X
p = (int [2]) {*p};
/*...%/
p is assigned the address of an unnamed automatic storage duration object that is an array of two ints, the first hav-
ing the value previously pointed to by p and the second, zero.

Designated initializers (see reference document number 3) readily combine with compound literals. On-the-
fly structure objects can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4}):

Or, if drawline instead expected pointers to struct point:

drawline (& (struct point){.x=1, .y=1},
& (struct point) {.x=3, .y=4});

A read-only compound literal can be specified through constructions like:
(const float []){le0, lel, le2, le3, led, le5, 1leé6}

The following three expressions have different meanings:

2. Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types only, and the result
of a cast expression is not an lvalue.

3. For example, subobjects without explicit initializers are initialized to zero.

4. In particular, the evaluation order need not be the same as the order of subobject initialization. The extensions to initializers
described in reference document number 3 prescribe an ordering for the implicit assignments to the subobjects that
comprise the unnamed object.

5. This allows implementations to share storage for string literals and constant compound literals with the same or overlapping

representations.
165%
2.1

2.1 X3J11 Technical Report — Compound Literals

Compound Literals 3 Language

" /tmp/ £ileX30OOKX "
(char []){"/tmp/fileXoCXX"}
(const char[]) {"/tmp/fileXooXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

Like string literals, const-qualified compound literals can be be placed into read-only memory and can even be
shared. For example,

(const char[]) {"abe"} == "abc"
might yield 1 if the literals’ storage is shared.

Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in
place of the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval (endless_zeros);

155"

2.1 X37J11 Technical Report — Compound Literals 2.1

