N350
94-035

June 3, 1994
An Alternative to Imaginary Types

Tom MacDonald
Cray Research, Inc.
655F Lone Oak Drive
Eagan, MN 55121
tam @cray.com

The primary example used to demonstrate the need to add imaginary types to C is that
the evaluation:

2i * (o + 31) 5 (-6 + ooi)
is preferable to the evaluation specified by:
21 * (o + 3i) — (NaN + ooi)

(See WG14/N339, X3J11/94-024, Issues Regarding Imaginary Types for C and C++.) How-
ever, there is a technique programmers can use when they want to ensure this kind of behavior.
Given a real number x and complex number z, the following macro produces the desired result
for the mathematical expression xi * z.

#define IXC(x,z) CMPLX(-(x)*cimag(z), (x)*creal(z))

and only uses two multiplications. In the rare instances when the e must be preserved, a pro-
grammer can use the above expression to guarantee a certain behavior. There is also the added
advantage that the programmer is clear about where the program depends upon specific
behavior involving e values.

In conclusion, the above technique allows programmers to control expression evaluation in an
efficient way without introducing new types to C (or new classes to C++). It continues to be
my belief that the benefits gained from adding the new types does not justify the expense of
adding the new types. There are easy to use alternatives for programmers when they need to
preserve certain exceptional values.

+



