94 - 034
Extended Integers For C Sop &9

Version 2.0

John W Kwan
Hewlett-Packard Company
Cupertino, California

1. Introduction

The ANSI/ISO C standard specifies that the language should support 4 integer data types, char,
short, int and long. However, the Standard places no requirement on their length (number of bits)
other than that int should be at least as long as short, and long should be at least as long as int.
Traditionally (i.e. under Kernighan and Ritchie), C had always assumed that int is the most efficient
integer data type on a machine and the ANSI Standard, with its integral promotion rule, tacitly
continues this assumption. For 16-bit based systems, as in some early PCs, most implementations
assigned 8, 16, 16 and 32 bits to char, short, int, and long respectively. For 32-bit based systems,
the common practice is to assign 8, 16, 32 and 32 bits to these types. This difference in int size can
create some interesting problems for users who migrate from one system to another system which
assigns different sizes to integral types, because the C Standard’s promotion rule can produce silent
changes unexpectedly.

Consider the following example :

main ()
{
long L = -1;
unsigned int i = 1;
if (L > i)
printf (“L greater than i\n”)
else
printf (“L not greater than i\n”") ;
}

Under the Standard’s promotion rule, this program will print “L greater than i” if size of int equals
size of long; but will print “L not greater than i” if size of int is less than size of long. Both results
are legal and correct. Hence the size of the int data type is significant in any C implementation.
With the introduction of 64-bit architected systems in the industry, the choice of the size of int is
even more important, for it has compatibility as well as performance ramifications.

To complicate matters further, the need for a integer larger than 32 bits arises for those 32-bit based
systems that support large files. For those systems that feel a need to have a larger integer type, a
new 64-bit integer type commonly referred to as long long was implemented.

long long is created specifically to satisfy the need for an integer type larger than 32 bits. It is non-
standard and this makes it non-portable. It is not intended to be a general solution for the “extended
integer” problem. Efforts to find a common int size on 64-bit based systems turned out to be much
more difficult than expected.

3l

2 Extended Integers For C

First of all, any change in the size of int from the current definition will produce incompatibility;
and no mapping of the base integer types to a particular range of values produces satisfactory
performance in all systems. Any one model that is optimal for one architecture is usually sub-optimal
for another. After much discussion, the industry remains divided. However, the current system of
different int sizes on different platforms makes life difficult for software developers who must
maintain different source for different machines (usually by using #ifdef). This is not very desirable.
We must provide the means for users to write portable code if C is to become “the programming
language of choice.”

To help software developers to write portable code, implementations should provide a set of integer
types whose definitions are consistent across machines and independent of operating systems and
other implementation idiosyncrasies. These integer types will be contained in a header called
<inttypes.h>. This header will define, via typedefs, integer types of various sizes; implementations
are free to typedef them to base types that they support. By using this header and the types it
provides, developers will be able to use a certain integer.type and be assured that it will have the
same properties and behaviour on different machines.

gxXiendaeda iniegeis rur v o

2. <inttypes.h>

#ifndef __inttypes_included
#define __inttypes_included

/*********************** Basic integer types AR R I R R R R R o R
* %

** The following defines the basic fixed-size integer types.

* %

** Implementations are free to typedef them to C base types or extensions
** that they support. If an implementation does not support one of the

** particular integer data types below, then it should not define the

** typedefs, macros, and functions corresponding to that datatype.

* x

** intmax_t and uintmax_t are guaranteed to be the largest signed and

** ynsigned integer types supported by the implementation.

*/

typedef ? int8_¢t; /* 8-bit signed integer */

typedef ? intlé6_t; /* 16-bit signed integer */

typedef ? 1int32_¢t; /* 32-bit signed integer */

typedef ? inté64_t; /* 64-bit signed integer */

typedef ? uint8_t; /* 8-bit unsigned integer */

typedef ? uintlé_t; /* 16-bit unsigned integer */

typedef ? uint32_t; /* 32-bit unsigned integer */

typedef ? uinté4_t; /* 64-bit unsigned integer */

typedef ? intmax_t; /* largest signed integer supported */

typedef ? uintmax_t; /* largest unsigned integer supported */

typedef ? intptr_t; /* signed integer type capable of holding a void * */
typedef ? uintptr_t /* unsigned integer type capable of holding a void * */
typedef ? intfast_t; /* most efficient signed integer type */

typedef ? uintfast_t; /* most efficient unsigned integer type */
/*********************** Extended integer types [E RS SR XSRS S SRS SRR EEEEEX]

* %

** The following defines integer types of at leasz n bits long. 142 ¥
LA

** Implementations are free to typedef them to C base types or any AW TR
** supported extensions. ; =

** o -~ BN W% ani
*/ / ,,/' r\‘/ 1AL P ﬁf
/*signed integer of at least 8_25;,lesa—thaﬁ“ig~gfgé * /
typedef ? int_least8_t; ./’
. hrey
v

/* signed integer of at least 16\2254;255~%haﬁ"§§‘bits */
typedef ? int_leastl6_t; ~

33

4 Extended Integers For C
A
P d b daondbe
/* signed integer of at least 32 but. less--than-64-bits */
typedef ? int_least32_t;

/* signed integer of at least 64 bits */
typedef ? int_least64_t;

/* unsigned integer of at least 8 but_less.than . l6.bits */
typedef ? uint_least8_t;

/* unsigned integer of at least 16 but“lesswthagﬁggmgigi.*/
typedef ? uint_leastl6_t;

/* unsigned integer of at least 32 but-less-~than~64--bits */
typedef ? uint_least32_t;

/* unsigned integer of at least 64 bits x/
typedef ? uint_least64_t;

/* ************************** limits ***********************************

* %

** The following defines the limits for the above types (in the manner of
** <limits.h>.

** INTMAX_MIN, INTMAX_MAX and UINTMAX_MAX can be set to implementation

** defined limits.

* %

** NOTE : A programmer can test to see whether an implementation supports
** a particular size of integer by seeing if the mcaro that gives the

** maximum for that datatype is defined.

** For example, #ifdef UINT64_MAX tests false, the implementation does not
** support unsigned 64 bit integers.

*/

fidefine INT8_MIN (-128)
#define INT16_MIN (-32768)
#define INT32_MIN (-2147483647-1)

#define INTS_MAX (127) L’ 87T
#define INT16_MAX (32767) ’ U
#define INT32_MAX (2147483647)

#define UINTS8_MAX (255)
#define UINT16_MAX (65535)
#define UINT32_MAX (4294967295)

#define INTMAX_MIN ? /* implementation defined */
#define INTMAX_ MAX °? /* implementation defined */
#define UINTMAX_MAX 2 /* implementation defined */

#define INT64_MIN (-9223372036854775807-1)
#define INT64_MAX (9223372036854775807)
#define UINT64_MAX (18446744073709551615)

/* ************************ CONSTANTS ********************************

* %
* Kk
* %

* %

*/

Extended Integers ForC 5

Define macros for constants of the above types. The intent is that:
constants defined using these macros have a specific length and
signedness.

#define __CONCAT___(A,B) A ## B

#define INT8_C(c) ((int8_t) c)

#define UINTS8_C (c) ((uint8_t) _ CONCAT__ (c,u))
#define INT16_C(c) (intl6_t) c)

#define UINT16_C(c) (uintl6_t) __ CONCAT__ (c,u))
#define INT32_C(c) ((int32_t) c)

#define UINT32_C(c) ((uint32_t) __CONCAT__ (c,u))
#define INT64_C(c) ((int64_t) __ _CONCAT__(c,1l))
#define UINT64_C(c) ((uint64_t) __CONCAT__ (c,ull))
#define INTMAX_C(c) ((int64_t) __ CONCAT__ (c,11))
#define UINTMAX_C(c) ((uint64_t) __CONCAT__(c,ull))

/************************* FORMATTED I/O IS EEEE S E R E R EEEEEREE R SRS LR R LR RS

* *

X

* %

* %

* %

* %

* *

* *

* %

* %

* %

* %

* %

* %

* %k

* *

* %

* %

* %

* %

* %

* %

* *

* %

Proposal I - library extension : 2

Defing extended version of the printf/scanf functions that yilI handle
the above typedefs e

~
2 -

%3

The size spéc;fier “1” (ell) is extended to allow aflgngth specifier N
after it to indicate that the integer is of N bits” long.

. o
L o

Example : ~.
intl6_t sl16; "~
uint32_t u32; el

printf (“intlé is %116d\n uiét}? is %$132u\n”, sl6, u32)

- N
. ~

.

Proposal Ia - extend the”éize specifier\“iﬁ (ell) to allow an * as the
length specifier. Thié will allow the actual ‘length to be passed in as

the first argument. P

Example : Tdfprint out an integer of “at least” 16 biiE‘\u
intl6”t myint; A

- .
printf (“The value is %1*d\n”, sizeof(intlé6_t) * bits_per_byte, myint);

./’/ \‘

gl

Jos

* %

* %

* %

* %

* %

Proposal II - use macros (no extensions to library):

The following macros can be used even when an implementation has not
extended the printf/scanf family of functions. The macros provide
the conversion specifier letter preceded by any needed size indicator

35

6 Extended Integers For C

* %

* *

* *

* *

* %

* *

* *

* %

* *

* *

* *

* %

* *

* *

* *

* %

* %

* %

* *

* %

* *

* %k

* %

* %

* %

* *

* *

* %

* %

* *

* %

flags.

The form of the names of the macros is either “PRI” for printf specifiers
or “SCN” for scanf specifiers followed by the conversion specifier letter
followed by the datatype size. For example, PRId32 is the macro for

the printf d conversion specifier with the flags for 32 bit datatype.

Separate printf versus scanf macros are given because typically different
size flags must prefix the conversion specifier letter.

There are no macros corresponding to the c conversion specifier. These
macros only support what can be done without extending printf/scanf, and
most implementations do not support the ¢ conversion specifier for
anything besides int.

Likewise, there are no scanf macros for the 8 bit datatypes. Most
implementations do not support reading 8 bit integers.

If an implementation does not suppdrt I/0 of a particular size datatype,
the corresponding macros below should not be defined. However, it is
believed that almost every ANSI C conforming implementation can support
the 16 and 32 bit(I/0 macros.

lefo ke

Vig -

An example use of these macros:

uint6é4_t u;
printf(*u = %016” PRIX64 “\n”, u);

For the purpose of example, the definitions of the printf/scanf macros
below have the values appropriate for a machine with 16 bit shorts,
32 bit ints, and 64 bit longs.

* *

*/

#define PRIAJS “g”
#define PRIAJ16 g~
#define PRIdJ32 g
#define PRIdJ64 “1ae
#define PRIiS8 wie
#define PRIile6 b g
#define PRIi32 Wi
#define PRIi64 st 18 I g
#define PRIoS8 “o”
#define PRIo16 “o”
#define PRIo32 to”
#define PRIo64 “llo”
#define PRIuS8 s
#define PRIulé6 o bUd
#define PRIu32 Sur
#define PRIu64 Y lug
#define PRIxS8 > <

30

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

Extended Integers ForC 7

PRIX16 “x”
PRIX32 Wy
PRIx64 “1lx”
PRIX8 wyw
PRIX16 wxn
PRIX32 wx#
PRIX64 “11xX”
SCNd1l6 “hd” &
SCNA@32 “g” . H
Y i
ScNd64 < w11@” 5
SCNil6 “hi” ;
SCNi32 ot SRR
- Y H
SCNié64 1\ *11i* 3 |
SCNol6 “ho”
SCNo32 - L
SCNo64 “llo”
SCNulé “Yhi”
SCNu32 e I
SCNué64 T “llu”
SCNx16 “hx”
SCNx32 “x
SCNx64 Tellxe e
SCNX16 “hX”
SCNX32 B SO .
SCNX64 ORLIXT e

-

/* The following macros define I/O formats for intmax_t and uintmax_t.
** Their particular values are implementation defined.

*/

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

PRIAMAX
PRIoMAX
PRIXMAX
PRIXMAX
PRIiMAX 7

SCNiMAM//T
SCNAMAX 2
SCNoMAX

SCNxMAX
SCNXMAX

Vo)) Y Y

J o

o

/*************** conversion functions RS RS EEE R R R RS R EEEEEEEEEEEEE RS S

* %

** The following routines are proposed to do conversions from strings to the
** largest supported integer types. They parallel the ANSI strto* functions.
** Implementations are free to equate them to any existing functions

** they may have.

>7

8 Extended Integers For C

i

extern
extern

#endif

/* end

intmax_t strtoimax (const char *, char**, int);
uintmax_t strtoumax (const char *, char=**, int) ;

/* __inttypes_included */

of inttypes.h */

29

Extended Integers ForC 9

3. Notes

Besides defining integer data types of 8, 16, 32 and 64 bits, this header also defines integer types of at
least 8, 16, 32 and 64 bits. This is mainly for systems whose word size does not fit the 16-bit or 32-bit
word model. Implementations do not have to support all data types typedef’ed here.

The various MIN/MAX macros define the limits of each data type. They also can be used as a test to
see if certain data types are not supported in an implementation by using the #ifdef directive. For
example, if #ifdef int64_MAX tests false, the implementation does not support 64 bit integers. In
general, it is expected that most of the integer types defined in this header will be supported; 64 bit
type is probably the only exception.

The __ CONCAT__ macro provides a means to construct constants of a particular type. The suffix used
to denote 64 bit integers, 11 and ull, are not standard and are used here only as examples.

This paper presented 2 methods to handle Formatted /O . One requires extension to the current
library by introducing a length specifier. The other provides macros for existing formats liked, i, o
and x. The only new formats added are for 64 bit integers, 114, 1lo, 1llx etc. These are not
standard but are common extensions available in many implementations. A third proposal is to ask
users to cast all integers to type long for printing. For example :

int_leastl6_t my_var;
printf (“%d\n”, (long) my_var);

Alternatively, it can be casted to intmax_t :

int_leastl6_t my_int;
printf (“The value is %016” PRIAMAX “\n”, (intmax_t) my_int);

4. Acknowledgement

The idea of <inttypes.h> grew out of discussions in an industry committee originally formed to
address the problem of int data type in 64-bit based machines. Many people participated in that
commitee and contributed ideas for such a header. Special thanks to Randy Meyers of Digital
Equipment Corporation who suggested and provided the macros for the formatted I/O proposal and
who collaborated with me on an earlier version of this paper.

27

